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CO, Capture and Storage Technology
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CO, Capture and Storage
Technology

e CCS is a four-step process

— Pure stream of CO, captured from flue gas or other
process stream

— Compressed to ~100 bars
- Transported to injection site
- Injected deep underground geological formations

: Underground
¥ Compression I % -

Pipeline

Transport




Options for CO, Capture
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Options for geological storage

Geological Storage Options for CO, Produced oil or gas

Depleted oil and gas reservoirs Injected CO,
Use of CO, in enhanced oil recovery e 4 Stored CO,
Deep unused saline water-saturated reservoir rocks

Deep unmineable coal seams

Use of CO, in enhanced coal bed methane recovery

Other suggested options (basalts, oil shales, cavities)
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Storage in Deep Underground
Geological Formations

I Assuming a geothermal gradient
p U of 3550k from 15°C at the
Il surface, and hydrostatic pressure.

25 - : -
0 200 400

Density of CO, (g/cm?)

Storage efficiency increases with depth
because the density of CO, becomes greater

From IPCC Special Report



Storage Security: Trapping
Mechanisms
Structural and stratigraphic trapplng

— Permeability barrier &ﬁ —
— Capillary barrier

Priaty . 4—-5#"—'—1‘
SOIUb”Ity UrElofping Sandstone Shale

Residual saturation trapping (capillary trapping)

Mineral trapping




Topics

Is geologic storage secure?

How much capacity is there?

What are the major risks?

What monitoring technologies are available?

How much storage do we need to make a
difference?

How much does it cost?
What's next?



Multiple Lines of Evidence Indicate
Storage Can Be Secure and Effective

COg2 Projects & Sources

1. Natural analogues
—  Oil and gas reservoirs
—  CO, formations

2. Industrial analogues
— CO, EOR
— Natural gas storage
—  Liquid waste disposal

3. Fundamental physical and chemical processes
4. Numerical simulation of long term performance
5. Monitoring existing projects




Industrial Analogues

Guas Srorage Facilities
by Storage Field Type

B Aquifer Sterage Field
3 Depleted Gas Resevoir - .
TLNG 5 : .

Salt Cavern Storage a 5 5 i
® Salt Cavern Sterag ek 5 plalts
Sas "ru B R T % B Tormariy rm

3 Undergreund Storage

Location of Natural Gas Storage Projects in the U.S.



Temporal Evolution of Trapping
Mechanisms

Structural &
stratigraphic
trapping

Storage security
should increase
with time at an
effective storage
Site.

Solubility
trapping
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Existing Storage Sites
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Sleipner Project, North Sea

1996 to present
1 Mt CO, injection/yr

Selsm'C mon |t0r| ng Gas from Sleipner Wegt_ . } :
icl-n well

Utsira formation
(800 - 1000m depth)

Sleipner T

Sleipner East
- Production and injection wells

Sleipner East Field

Picture compliments of Statoill



Monitoring CO, Migration with 3-D
Seismic Imaging
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Two way time
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From Chadwick 2004



Weyburn CO,-EOR and Storage

Project

e 2000 to present
e 2.7 Mtlyear CO, Injection

« CO, from the Dakota
Gasification Plant in the U.S.

[ ] .
Regina

Photo’s and map courtesy of PTRC and Encana




In Salah Gas Project

Gas Processing and CO,, Separation Facility

Processing facilities

In Salah Gas Project Crelaconus sanasiones & g 4 gas 360,
- Krechba, Algeria Rt soter.__ [ | ERES
Gas Purification L
- Amine Extraction ="
1 Mt/lyear CO, Injection
Operations Commence
- June, 2004 Courtesy of BP



Optimizing Sweep Efficiency and Injectivity
with Long Reach Horizontal Wells

/ Krechba 503

1500 metres ofihorizontal section

il " a"’l-

Wells geo-steered
through 20m thick
reservoir unit to
maximise the
penetration of high
porosity sandstones



Fraction Retained

“ Observations from engineered and natural
analogues as well as models suggest that
the fraction retained in appropriately
selected and managed geological
reservoirs Is very likely* to exceed 99%
over 100 years (<104/yr), and is likely** to
exceed 99% over 1,000 years (<10>/yr).”

* "Very likely" is a probability between 90 and 99%.
** Likely is a probability between 66 and 90%.

From IPCC Special Report



Topics

Is geologic storage secure?

How much capacity is there?

What are the major risks?

What monitoring technologies are available?

How much storage do we need to make a
difference?

How much does it cost?
What's next?



Volumetric Storage Capacity

Multiphase Gravity Heterogeneity Structural
Flow Effects Effects Effects Effects

From Doughty et al., 2002



Reconciling Top-Down and Bottom-Up Storage
Capacity Estimates

DOE WestCarb Regional Partnership
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Capacity of Storage Formations

Reservoir Type

Lower Estimate of
Storage Capacity
(GtCO,)

Upper Estimate of
Storage Capacity
(GtCO,)

Oil and gas fields

6752

9002

Unminable coal seams
(ECBM)

3-15

200

Deep saline formations

1000

Uncertain, but
possibly 104

a. Estimates would be 25% larger if undiscovered reserves were included. From IPCC Special Report

“Avalilable evidence suggests that worldwide,
it is likely that there is a technical
potential of at least about 2,000 GtCO,, (545 GtC) of
storage capacity in geological formations.”




Geographical Distribution of CO,,
Sources

Stationary Emissions

Mt COzPer Year
~ 0.1-1

1-5
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10-15 g
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From IPCC Special Report




Prospectivity for Storage around
the World

Storage Prospectivity
@@ Highly Prospective

Prospective

Non=prospective 3,000

From Bradshaw and Dance 2005

“It is likely that the technical potential for geological storage
IS sufficient to cover the high end of the economic potential

range (2200 GtCO,), but for specific regions, this may not be
true.”




Topics

Is geologic storage secure?

How much capacity is there?

What are the major risks?

What monitoring technologies are available?

How much storage do we need to make a
difference?

How much does it cost?
What's next?



Biggest Risks
Have Been lIdentified

Industrial analogues identify
major risks

Leakage through poor
guality or aging injection
well completions

Leakage up abandoned
wells

Leakage due to inadequate =
caprock characterization

Inconsistent or inadequate
monitoring

Maturation of the technology and improved regulations have
mitigated most of these problems for the industrial analogues.



Leakage Pathways in Abandoned Well

e Between casing and
cement wall and plug,
respectively

e Through cement
plugs

* Through casing

e Through cement wall

 Between the cement
wall and rock

Release rates of >10-?/year for leaking wells,
but remediation is likely for such large releases

Gasda et al., 2004



World Oil and Gas Well
Distribution and Density

bl
1000 Km
Approx.Scale at Equator

WORLDWIDE DRILLING DENSITY
Number of wells drilled per
10,000 sq km

1-100
100 - 300

.] 300 - 1,000 . 4400 - 23.400 No Wells / Data

. 1,000 - 4,400 . 23,400 - 61,000

From IHS Energy

Well density and risks from abandoned wells depends on location




Well Selected and Managed Sites are
the Key to Safe and Secure Storage

“ With appropriate site selection
Informed by available subsurface
iInformation, a monitoring program
to detect problems, a regulatory
system, and the appropriate use of
remediation methods to stop or

PIPELINE
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control CO, releases if they arise,
the local health, safety and
environment risks of geological
storage would be comparable to
risks of current activities such as
natural gas storage, EOR, and deep
underground disposal of acid gas.”

0

From IPCC Special Report
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Monitoring Is Needed to Ensure that
Geologic Storage Is Safe and Effective

Requirements for Geologic Storage

. B

Worker and Local Environmental GHG Mitigation

: Impacts to Groundwater :
Public Safety and Ecosystems Effectiveness

B

Monitoring Needs




Key Monitoring Needs

*Monitor injection well performance
— Wellhead and formation pressure
— Casing annulus pressure
— Injection rates

*Detect leakage and seepage of CO,
— Injection well leakage
— Leakage from the primary storage reservoir

— Surface seepage from the ground and abandoned
wells



Monitoring Well Integrity

Injection and
production rate

Wellhead and
formation pressure

Casing and annulus
pressure testing

Well logs

— Temperature
— Noise

— Cement bond
— Sonic




Geophysical Monitoring
Technigues

Seismic geophysics
— Surface 2 and 3D

— VSP

— Cross-well

Electrical and
electromagnetic geophysics

Gravity
Tilt measurements

Airborne or satellite-based
land surface deformation

Microseismicity

Courtesy of Tom Daley, LBNL



Surface Monitoring for Seepage
Detection and Inventory Verification

Eddy covariance flux
monitoring

Flux chamber monitoring

Soil gas and vadose zone
monitoring

Fluid and gas phase tracers

Atmospheric CO,
concentration

Courtesy of
i Jennifer Lewicki,
¥ LBNL




Example Seepage Detection Scenarios

(150 Mt Storage Project). Seepage rate 0.01 to
0.1%/year

Seepage around a well Seepage around a well

Footprint of CO,
plume

104 x natural 300 to 3000 x
0.1to 1 x efflux r =10 m . r=100

Natural Efflux

If significant leaks occur, they
will far exceed natural CO, fluxes.

100 to 1000 x

Seepage along a narrow Seepage along a Seepage along a
fracture zone fault zone fault zone



The Frio Brine Pilot, Texas

Geochemical Sampling
f W . e
- —-—L - < - l.. p -.’ : s o5
BSRRSe Cxcli
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Led by Susan Hovorka, UT
Austin

Injection: 1600 tonnes CO,
over 10 days

Well Depth: 1540 m

Observation well 30 m from
Injection well

Monitoring

— Formation pressure

— Tracers

— Geochemical sampling

— VSP

— Cross-well seismic and EM
— RST logging




Observed Data and Model Predictions

t=0 (Oct 4, 2004)
Begin CO, injection
at ~40 gpm (223 T/da

¢t —
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Elapsed Time (days)

Field data provided by Barry Freifeld and Rob Trautz, LBNL



Pressure Transient Analysis

Injection Well

Measured

Calculated

200000 400000 600000 800000 1000000

Time (S)




Examples: RST Logs from Frio Formation
Compared to Simulated CO,, Migration

[ | . D ||

Sg D 01 02 03 04 05 06 07 08

Simulation from Doughty et al., 2005
RST data from Sakurai et al.. 2005



Frio Brine Pilot: Vertical Seismic Profiling

(LEINTL Laksls)|

VVVVVV
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Data and interpretation
from Tom Daley, LBNL



iIc Tomography

from the Frio Formation
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Concept of the Wedge and Slices
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Filling the Wedge

The strategies available to provide the slices to fill the wedge are grouped
below. All strategies are based on technologies already in use.

Coal to Gas

Natural Sinks .

W  Nuclear

Renewables

From Pacala and Socolow, Science, 2004



CO, Capture and Storage

COg3 Projects & Sources

Effort needed for 1 slice: 3.4
Gt CO,/year by 2050

World-wide, build or replace 7

1000 MW coal fired power
plants with CCS every year and
maintain them until 2054

59 Projects
@ Natural Sources
¥ Industrial Sources
— Pipelines
&—2 Proposed Pipelines
Fields

CCS World-wide 100-fold increase in the
amount of CO, injected for EOR
each year in the U.S.

Modified from Pacala and Socolow, Science, 2004



Topics

Is geologic storage secure?

How much capacity is there?

What are the major risks?

What monitoring technologies are available?

How much storage do we need to make a
difference?

How much does it cost?
What's next?



Costs for Electricity with CCS

Integrated
Gasification
Combined
Cycle
(US$/kWh)

Natural Gas
Power plant svstem Combined | Pulverized Coal
plant sy Cycle (US$/kWh)

(US$/kWh)

Without capture 0.03 - 0.05 0.04 - 0.05 0.04 - 0.06
(reference plant)

With capture and 0.04 - 0.08 0.06 - 0.10 0.05 - 0.09
geological storage

W'tgg%pf“re and 0.04-0.07 | 0.05-0.08 0.04 - 0.07

Costs with CO,, capture and storage increase by from 1 to 5 cents/kWhr.

* Based on oil price of $15 to $20/barrel Based on IPCC Special Report



Cost Per Tonne of CO, Avoided

Natural Gas
Combined Pulverized Coal
Cycle reference

Type of power plant with CCS reference plant
plant

USS/IMCO, US$/tCO,
avoided avoided

Power plant with capture and
geological storage

Natural Gas Combined Cycle

Pulverized Coal

Integrated Gasification Combined
Cycle

Based on IPCC Special Report
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Key Issues for Technology Development
and Deployment of Geological Storage

Evaluating Abandoned Well Impacts On Storage
Integrity (especially in N. America)

Optimizing Sweep Efficiency and Injectivity
Demonstrating Long-Term Storage Integrity
Developing Criteria for Site Selection

Reconciling Top-Down and Bottom-Up Capacity
Estimates

Establishing Effective Monitoring and Verification
Protocols







Life Cycle of a Storage Project
and Monitoring Requirements

Pre-operation Operation Closure Post-closure
Phase Phase Phase Phase
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Components of the Basic and
Enhanced Monitoring Packages

Pre-
operational
Monitoring

Operational

Monitoring

Closure
Monitoring

Basic Monitoring Package

* Well logs

» Wellhead pressure

» Formation pressure

* Injection and production rate testing
» Seismic survey

* Atmospheric CO, monitoring

» Wellhead pressure

* Injection and production rates

» Wellhead atmospheric CO, monitoring
* Microseismicity

» Seismic surveys

» Seismic surveys

Additional Measurements for
Enhanced Monitoring Package

» Gravity survey
» Electromagnetic survey
* CO, flux monitoring

* Pressure and water quality above the storage
formation

* Well logs

» Gravity survey

» Electromagnetic survey

» Continuous CO, flux monitoring at 10 stations

* Pressure and water quality above the storage
formation

e Gravity surveys
» Electromagnetic surveys
» Continuous CO, flux monitoring at 10 stations

» Pressure and water quality above the storage
formation

» Wellhead pressure monitoring for 5 yeas, after
which time the wells will be abandoned



Discounted Monitoring Costs (@ 10%)

Storage Costs $0.50 to $10/tonne

$ /tonne CO,




Implications of Longer-term

Monitoring

1000 year period
Repeat seismic surveys every 10 years
Basic monitoring package

— Intergenerational discount rate of 1% after 30 years
— $0.053/tonne increases to $0.059/tonne

10% Increase In cost

Non-financial issues

— Responsibility for monitoring
— Oversight and record keeping
— Responsibility for remediation
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