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Monitoring is Needed to Ensure that 
Geologic Storage is Safe and Effective

Monitoring Needs

Requirements for Geologic Storage

Worker and 
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Key Monitoring Needs

•Monitor injection well performance
– Wellhead and formation pressure
– Injection rates

•Detect leakage and seepage of CO2
– Injection well leakage
– Leakage from the primary storage reservoir
– Surface seepage from the ground and 

abandoned wells



Other Purposes for Monitoring

• Establish baseline conditions to assess CO2 storage 
impacts

• Identify and confirm storage efficiency and processes

• Calibrate models and confirm performance

• Detect microseismicity associated with CO2 injection

• Verify inventory for financial transactions and national 
accounting

• Assess environmental, health and safety impacts of leakage

• Design and evaluate remediation efforts



Well-based Monitoring Techniques

• Injection and production 
rates

• Wellhead and formation 
pressures

• Casing and annulus 
pressure testing

• Temperature
• Well logs
• Fluid and gas composition



Geophysical Monitoring Techniques

• Seismic geophysics
• Electrical and 

electromagnetic geophysics
• Gravity
• Tilt measurements
• Airborne or satellite-based 

land surface deformation
• Microseismicity

Courtesy of Tom Daley, LBNL 



Surface Monitoring for Seepage 
Detection and Inventory Verification

Flux Chamber

Eddy Covariance

• Soil gas and vadose zone 
monitoring

• Fluid and gas phase tracers
• Eddy covariance flux 

monitoring
• Flux chamber monitoring
• Atmospheric CO2

concentration

Courtesy of Jennifer Lewicki, LBNL 



More than One Approach will Improve 
Confidence in Monitoring Results
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Examples: Seismic Data 
Collected at Sleipner



Examples: Seismic Tomography 
from the Frio Formation
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Slide compliments of Tom Daley, LBNL 



Examples: RST Logs from Frio Formation 
Compared to Simulated CO2 Migration
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RST data from Sakurai et al., 2005



Vertical Seismic Profiling 
for CO2 Location Detection
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Frio Brine Pilot: 
Vertical Seismic Profiling Results
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Sensitivity of Seismic Methods

Conceptual
Model Detection Limits at Reservoir Depth

Myer et al, 2002: 10,000 tonnes
Arts et al., 2004: Sleipner, 4,000 tonnes
White el al., 2004: Weyburn, 2,500 tonnes
Daley et al., 2005: Frio Formation, 1,600 tonnes

For a 5 MtCO2/year Storage Project

Detection of 0.03% to 0.2% of annual injection rate



Detection Limits Improve Even Further 
if the CO2 is Shallower
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Example Seepage Detection Scenarios
(150 Mt Storage Project): Seepage rate 0.01 to 0.1%/year
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Life Cycle of a Storage Project
and Monitoring Requirements 
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Monitoring Cost for Saline Formation
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Discounted Costs (@10%)
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Conclusions

• Many monitoring options available
• Seismic imaging is currently most 

promising for subsurface monitoring
• Combinations of techniques provide 

greater assurance
• Detection of significant leaks (>0.1% 

to 0.01%/year) may be possible 
under many circumstances

• Costs of monitoring are small 
compared to other costs

• Innovations will improve spatial and 
temporal resolution

• More demonstrations are needed
Frio Brine Pilot, 2004
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