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OverviewOverview

• Energy production:  overview of the byproducts of 
different approaches to energy production

• Nuclear fuel cycle  review
• Spent fuel and high-level waste characteristics
• Advanced fuel cycles and implications for repository 

capacity
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Energy from Nuclear FissionEnergy from Nuclear Fission

• Fission Fuel Energy Density:  8.2 x 1013 J/kg
• Fuel Consumed by 1000-MWe Plant:  3.2 kg/day
• Waste:
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Energy from Fossil FuelsEnergy from Fossil Fuels

• Fossil Fuel (Coal) Energy Density:  2.9 x 107 J/kg
• Fuel Consumed by 1000-MWe Plant:  7,300,000 kg/day
• Waste:

1999 Global Coal Consumption:  3 billion tons
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Construction Inputs for Several Energy SourcesConstruction Inputs for Several Energy Sources

• Nuclear: 1970’s vintage PWR, 90% capacity factor, 60 year life [1]
40 MT steel / MW(average)
190 m3 concrete / MW(average)

• Wind: 1990’s vintage, 6.4 m/s average wind speed, 25% capacity 
factor, 15 year life [2]

460 MT steel / MW (average)
870 m3 concrete / MW(average)

• Coal: 78% capacity factor, 30 year life [2]
98 MT steel / MW(average)
160 m3 concrete / MW(average)

• Natural Gas Combined Cycle: 75% capacity factor, 30 year life [3]
3.3 MT steel / MW(average)
27 m3 concrete / MW(average)

1.  R.H. Bryan and I.T. Dudley, “Estimated Quantities of Materials Contained in a 1000-MW(e)
PWR Power Plant,” Oak Ridge National Laboratory, TM-4515, June (1974)

2.  S. Pacca and A. Horvath, Environ. Sci. Technol., 36, 3194-3200 (2002).
3.  P.J. Meier, “Life-Cycle Assessment of Electricity Generation Systems and Applications for

Climate Change Policy Analysis,” U. WisconsinReport UWFDM-1181, August, 2002.

Concrete + steel are >95%
of construction inputs
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Uranium Use in Different ReactorsUranium Use in Different Reactors

     HWR  PWR  PWR  FBR
        once-through recycle

burnup MWday/ton  6800  33,000  33,000  -

capacity factor   0.8   0.8   0.8   0.8

thermal efficiency  0.3   0.33   0.33   0.4

U consumption/yr  144 MT  201 MT  123 MT  1.5 MT

facilities required  U conversion U conversion U conversion U conversion
     Fuel Fab.  Fuel Fab.  Fuel Fab.  Fuel Fab.
        Enrichment Enrichment
           Reprocessing Reprocessing
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Example: Fuel Cycle Mass BalanceExample: Fuel Cycle Mass Balance

1 GWe PWR, 1 Year Operation, with reprocessing
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Detailed Summary of Fuel Cycle FacilitiesDetailed Summary of Fuel Cycle Facilities
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The Generations of Nuclear EnergyThe Generations of Nuclear Energy
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Generation III:  The ABWRGeneration III:  The ABWR
• Advanced Boiling Water Reactor - an “Evolutionary” design
• Developed by:

General Electric, San Jose, California
Hitachi/Toshiba, Japan

• 1350-MWe capacity
• 2 units constructed in Japan, 2 under construction in Taiwan

Modular assembly reduces
construction time to 52 months
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Computer Modeling Simplifies Nuclear ConstructionComputer Modeling Simplifies Nuclear Construction

McGuire Nuclear Station Reactor Building Models.

1000 MW Reactor (Lianyungang Unit 1)

1978:  Plastic models on roll-around carts

2000:  4-D computer aided design
and virtual walk-throughs
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Gen III+ Evolution is Toward Reduced Complexity/MaterialsGen III+ Evolution is Toward Reduced Complexity/Materials

ABWR ESBWR:  >50% reduction in building
volume and number of components

(~30% reduction in capital cost)

The ESBWR is now in pre-certification review at
the Nuclear Regulatory Commission
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The PBMR is an Example of a Gen III+ GasThe PBMR is an Example of a Gen III+ Gas--Cooled ReactorCooled Reactor

• Pebble Bed Modular Reactor specifications:
165 MWe modular high-temperature helium-

cooled gas-turbine reactor
Based on 15MWe German AVR that operated 

from 1967-1989
Fuel temperatures:

Average fuel: 1095°C
Peak fuel shut-down:  1600°C
Maximum tolerable:  >2000°C

Uses helium gas turbine (45% thermal efficiency)
3.5 m diameter x 10 m high graphite lined vessel; 

440,000  6-cm diameter pebbles
Power controlled by adding or removing helium 

coolant—no control rods
Pebble recycling maintains 

constant reactivity and achieves 
very high fuel burnup

Construction time estimate: 24 months
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Generation IV SystemsGeneration IV Systems

Fuel, Fuel 
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Gen IV:  SodiumGen IV:  Sodium--Cooled Fast Reactor (SFR)Cooled Fast Reactor (SFR)

Characteristics
Sodium coolant
550°C Outlet Temp
150 to 500 MWe
Metal fuel with pyro 

processing / MOX fuel 
with advanced aqueous

•Benefits
Consumption of LWR 

actinides
Efficient fissile material 

generation
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Gen IV:  Molten Salt Reactor  (MSR)Gen IV:  Molten Salt Reactor  (MSR)

Characteristics
Fuel:  liquid Na, Zr, U and Pu 

fluorides
700-800°C outlet temperature
1000 MWe
Low pressure (<0.5 MPa)

•Benefits
Waste minimization
Avoids fuel development
Proliferation resistance 

through low fissile material 
inventory
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Advanced Fuel Cycles can Impact Repository PerformanceAdvanced Fuel Cycles can Impact Repository Performance

• Fission products
are produced in direct 

proportion to fission power
dominate early (few decade) 

decay heat (Cs-137/Sr-90)
only modestly affect long-term 

radiotoxicity
• Actinides

dominate spent fuel volume 
(uranium)

dominate intermediate decay 
heat (particularly Am-241, 
important for ventilated 
repositories)

can be recycled and fissioned 
if desired
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AFCI and AAA System StudiesAFCI and AAA System Studies



7

18
General Training On Methodologies For Geological Disposal in North America

IAEA Network of Centers of Excellence

Economics for Recycle Depend on Several FactorsEconomics for Recycle Depend on Several Factors

• Current uranium prices are too low to justify recycle to 
recover energy in spent fuel

Reprocessing and fuel fabrication costs make plutonium recycle to 
LWRs uneconomic compared to once-through, increases net quantity 
of minor actinides requiring management

Fast reactors have less expensive recycle/fuel fabrication costs, but 
reactor capital costs are high (~30%) compared to LWRs

• Yucca mountain provides an example for 
understanding recycle economics

When electricity is generated (1 mill/kWhr):  ~$310/kg
Yucca Mountain cost:  ~$540/kg spent fuel
Waste fund real interest rate:  2.6% to 4.2%

after 25 years storage:  $590 to $870/kg
Current reprocessing costs:  $900 to $2500/kg
Current fast reactor fuel fabrication: $1400 to $5000/kg
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ConclusionsConclusions

• For Yucca Mountain, the current Waste Fund Fee 
Adequacy study indicates that spent fuel can be disposed 
at 1 mill/kWhr, up to the capacity limit set by 
political/technical requirements

Disposal costs for the second repository could be higher 
(infinite?)

• R&D on advanced fuel cycles has the potential eliminate 
the need for multiple repositories at modest cost

Convergence of waste fund interest accumulation with 
R&D cost reductions of closed fuel-cycle technology


