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ABSTRACT 

Numerical issues with modeling transport of 
chemicals or solute in realistic large-scale subsurface 
systems have been a serious concern, even with the 
continual progress made in both simulation 
algorithms and computer hardware in the past few 
decades. The problem remains and becomes even 
more difficult when dealing with chemical transport 
in a multiphase flow system using coarse, 
multidimensional regular or irregular grids, because 
of the known effects of numerical dispersion 
associated with moving plume fronts. We have 
investigated several total-variation-diminishing 
(TVD) or flux-limiter schemes by implementing and 
testing them in the T2R3D code, one of the TOUGH2 
family of codes. The objectives of this paper are (1) 
to investigate the possibility of applying these TVD 
schemes, using multi-dimensional irregular 
unstructured grids, and (2) to help select more 
accurate spatial averaging methods for simulating 
chemical transport given a numerical grid or spatial 
discretization. We present an application example to 
show that suchTVD schemes are able to effectively 
reduce numerical dispersion. 

INTRODUCTION 

Numerical approaches for modeling multiphase flow 
and tracer or chemical transport in porous media are 
generally based on methodologies developed for 
reservoir simulation and groundwater modeling. 
They involve solving coupled mass-conservation 
equations that govern the transport processes of all 
chemical components using finite-difference or 
finite-element schemes. Since the 1960s, in parallel 
with rapid advances in multiphase flow simulation 
and groundwater modeling, significant progress has 
been made in understanding and modeling solute 
transport through porous and fractured media (e.g., 
Scheidegger, 1961; Bear, 1972; Huyakorn et al. 
1983; Istok, 1989; Falta et al., 1992; Unger et al. 
1996; Forsyth et al. 1998; Wu and Pruess, 2000).  
 
Since the 1970s, transport problems involving solute 
and contaminant migration in porous and fractured 
formations have received increasing attention in the 
groundwater literature and soil science. As demanded 
by site characterization, remediation, and other 

environmental concerns, many quantitative modeling 
approaches have been developed and applied (e.g., 
van Genuchten and Alves, 1982; Abriola and Pinder, 
1985; Corapcioglu and Baehr, 1987; Adenekan et al. 
1993; Forsyth, 1994). More recently, suitability 
evaluation of underground geological storage of 
high-level radioactive wastes in unsaturated fractured 
rocks has generated renewed interest in investigation 
of tracer or radionuclide transport in a nonisothermal, 
multiphase fractured geological system (e.g., 
Viswanathan et al. 1998; Robinson et al. 2003; 
Moridis et al. 2003).  In addition, application of 
tracer tests, including environmental and man-made 
tracers, has become an important technique in 
characterizing subsurface porous-medium systems.  
 
Even with the continual progress made in both 
computational algorithms and computer hardware in 
the past few decades, modeling coupled processes of 
multiphase fluid flow and chemical migration in 
porous and fractured  media remains a mathematical 
challenge. There still exist many unresolved issues 
and limitations with current numerical approaches. 
One of the main concerns is that severe numerical 
dispersion often occurs when using a 
multidimensional control-volume-type numerical grid 
in field-scale modeling studies. It becomes even more 
problematic when dealing with tracer transport when 
a general 3-D, coarse, irregular grid is used to solve 
advection-dispersion-type governing equations for 
handling tracer transport. To overcome these 
numerical difficulties, scientists have investigated a 
number of total variation diminishing (TVD) or flux 
limiter schemes and applied them in transport 
modeling with varying successes (e.g., Sweby, 1984; 
Liu et al. 1994; Unger et al. 1996;  Forsyth et al. 
1998; Oldenburg and Pruess, 1997 and 2000). 
However, many of these investigations were 
demonstrated using regular grids. This work 
continues the effort of reducing numerical dispersion 
in simulating tracer or chemical plumes as they travel 
spatially through porous or fractured media.  The 
emphasis in this study is to examine the effectiveness 
of these TVD schemes in two- or three-dimensional, 
irregular, and unstructured grids.   
 
The objectives of this paper are (1) to develop a 
general scheme for implementing different TVD 
schemes into multidimensional irregular unstructured 
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grids of porous or fractured media, (2) to investigate 
the applicability of these TVD schemes to such 
irregular unstructured grids, and (3) to help select 
more accurate spatial averaging methods for 
simulating chemical transport, given a numerical grid 
or spatial discretization.  
 
In particular, implementation of TVD schemes is 
carried out using the T2R3D code, one of the 
TOUGH2 family of codes, made up of 
multidimensional, multiphase-flow, nonisothermal 
reservoir simulators. In this approach, a subsurface 
domain is discretized using an unstructured 
integrated-finite-difference grid, followed by time 
discretization carried out using a backward, first-
order, finite-difference method. The final discrete 
linear or nonlinear equations are handled fully 
implicitly, using Newtonian iteration. In addition, the 
fractured medium is handled using a general 
multicontinuum modeling approach. Also, we present 
an application example to demonstrate that TVD 
schemes are in general able to reduce numerical 
dispersion effectively. 

MODEL FORMULATION 

The physical processes associated with fluid flow and 
chemical transport in porous media are governed by 
fundamental conservation laws, represented 
mathematically (on the macroscopic level) by a set of 
partial differential or integral equations – governing 
equations. In addition, movement of dissolved mass 
components or chemical species within a fluid in a 
multiphase-porous-medium system is governed by 
advective, diffusive, and dispersive processes,  as 
well as  subject to other processes such as radioactive 
decay, adsorption, dissolution and precipitation, mass 
exchange or partition between phases, and other 
chemical reactions.  

Governing Equation 
Let us consider a multiphase, nonisothermal system 
consisting of several fluid phases, such as gas, water, 
and oil (NAPL), with each fluid phase in turn 
consisting of a number of mass components. To 
derive a set of generalized governing equations for 
multiphase fluid flow, multicomponent transport, and 
heat transfer, we assume that these processes can be 
described using a continuum approach within a 
representative elementary volume (REV) in a porous 
or fractured medium (Bear, 1972). In addition, a 
condition of local thermodynamic equilibrium is 
assumed so that at any time, temperatures, phase 
pressures, densities, viscosities, enthalpies, internal 
energies, and component concentrations (or mass 
fractions) are the same locally at each REV of the 
porous medium. 
 
According to mass and energy conservation 
principles, a generalized conservation equation of 

mass components and energy in the porous 
continuum can be written as follows: 
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∂
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where superscript k is the index for the components, 
k = 1, 2, 3,…, Nc, with Nc being the total number of 
mass components and with k = Nc+1 for the energy 
“component” (note that thermal energy is treated as a 
component for convenience); M is the accumulation 
term of component k; kG  is the decay or internal 
generation (reaction) term of mass or energy 
components; kq is an external source/sink term or 
fracture-matrix exchange term for mass or energy 
component k and energy; and kF is the “flow” term 
of mass or energy movement or net exchange from 
multiphase flow, or diffusive and dispersive mass 
transport, or heat transfer, as discussed below. 
 
Under equilibrium adsorption,  the accumulation term 
Equation (1) for component k is 
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where φ is the porosity of porous media; subscript β 
is an index for fluid phase (β = g for gas, = w for 
aqueous phase, = o for oil); 

βρ is the density of 

phase β;  and βS is the saturation of phase β; κ
βX  is 

the mass fraction of component k in fluid β; sρ is 

the density of rock solids; and k
dK  is the distribution 

coefficient of component k between the aqueous 
phase and rock solids to account for adsorption 
effects.  In the case in which components are subject 
to a first-order radioactive decay, the 
decay/generation term is 
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where kλ is the radioactive decay constant of 
component  k. The generation term may also be 
subject to other processes such as dissolution and 
precipitation, mass exchange and partition between 
phases, or chemical reactions. 
 
The accumulation term in (1) for the heat equation is 
usually is defined as 

( ) ( ) ss
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βββ
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where sUandUβ are the internal energies of fluid β 
and rock solids, respectively. 
 
The mass component transport is governed in general 
by processes of advection, diffusion, and dispersion. 
Advective transport of a component or solute is 
carried by fluid flow, and diffusive and dispersive 
flux is contributed by molecular diffusion and 
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mechanical dispersion, or hydrodynamic dispersion. 
These processes are described using a modified 
Fick’s law for the total mass flow term for a 
component k, by advection and dispersion, is written 
as  

( ) ( )( )∑∑
β

ββββββ
β

ρ∇∇+ρ∇−= ••• kkkk XDXF v (k = 1, 2, 3,…, Nc) 

(5) 
where βv  is a vector of the Darcy’s velocity or 
volumetric flow, defined by Darcy’s law to describe 
the flow of single or multiple immiscible fluids as: 
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where βP , βµ , and g are pressure, viscosity of fluid 

phase β, and gravitational constant, respectively; z is 
the vertical coordinate; k is absolute or intrinsic 
permeability; and 

βrk is the relative permeability to 

phase β.  In Equation (5), kDβ  is the hydrodynamic 
dispersion tensor accounting for both molecular 
diffusion and mechanical dispersion for component k 
in phase β, defined by an extended dispersion model 
(Scheidegger, 1961; Bear, 1972) to include 
multiphase effects as 
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where βαT  and βαL  are transverse and longitudinal 
dispersivities, respectively, in fluid β of porous 
media; τ  is tortuosity of the porous medium; kdβ

 is 
the molecular diffusion coefficient of component k 
within fluid β;  and δij is the Kronecker delta function 
(δij = 1 for i = j, and δij = 0 for i ≠ j), with i and j being 
coordinate indices. 
Equation (5) indicates that the mass flow consists of 
two parts, the first part, i.e., the first term on the left-
hand side, is contributed by advection in all phases, 
and the second part, the second term on the left-hand 
side of (5), is diffusive flux by hydrodynamic 
dispersion.  
 
Heat transfer in porous media is in general a result of 
both convective and conductive processes, although 
in certain cases, radiation may also be involved. 
These heat-transfer processes are complicated by 
interactions between multiphase fluids, 
multicomponents, and associated changes in phases, 
internal energy, and enthalpy. Heat convection is 
contributed by thermal energy carried mainly by bulk 
flow of all fluids as well as by dispersive mass fluxes. 
On the other hand, heat conduction or radiation is 
driven by temperature gradients and may follow 
Fourier’s law or Stefan-Boltzmann’s law, 
respectively. Then the combined, overall heat flux 
term, owing to convection, conduction, and radiation 
in a multiphase, multicomponent, porous medium 
system, may be described as 
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where khandh ββ
 are specific enthalpies of fluid phase 

β and of component k in fluid β, respectively; 
TK is 

the overall thermal conductivity; T is temperature; ε 
is a radiation emissivity factor, and 

oσ (=5.6687×10-8 
J/m2 K4) is the Stefan-Boltzmann constant. 
 
As shown in Equation (8), the total heat flow in a 
multiphase, multicomponent system is determined by 
heat convection of flow and mass dispersion [the first 
two terms on the right-hand side of (11)], heat 
conduction (the third term on the right-hand side), 
and thermal radiation (the last term on the right-hand 
side).  

Constitutive Relationships 
To complete the mathematical description of 
multiphase flow, multicomponent transport, and heat 
transfer in porous media, Equation (1), a generalized 
mass- and energy-balance equation, needs to be 
supplemented with a number of constitutive 
equations. These constitutive correlations express 
interrelationships and constraints of physical 
processes, variables, and parameters, and allow the 
evaluation of secondary variables and parameters as 
functions of a set of primary unknowns or variables 
selected to make the governing equations solvable. 
Table 1 lists a commonly used set of constitutive 
relationships for describing multiphase flow, 
multicomponent mass transport, and heat transfer 
through porous media. Many of these correlations for 
estimating properties and interrelationships are 
determined by experimental studies. 

NUMERICAL FORMULATION  

The methodology for using numerical approaches to 
simulate multiphase subsurface flow and transport 
consists in general of the following three steps: (1) 
spatial discretization of mass and energy 
conservation equations of Equation (1), (2) time 
discretization; and (3) iterative approaches to solve 
the resulting nonlinear, discrete algebraic equations. 
Among various numerical techniques for simulation 
studies, a mass- and energy-conserving discretization 
scheme, based on finite volume or integral finite-
difference or finite-element methods, is the most 
commonly used approach, and is discussed here. 

Discrete Equations 
The component mass- and energy-balance Equation 
(1) are discretized in space using a control-volume, 
integrated finite difference concept (Narasimhan and 
Witherspoon, 1976; Pruess, 1991). The control-
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volume approach provides a general spatial 
discretization scheme that can represent a one-, two- 
or three-dimensional domain using a set of discrete 
meshes. Each mesh has a certain control volume for a 
proper averaging or interpolation of flow and 
transport properties or thermodynamic variables. 
Time discretization is carried out using a backward, 
first-order, fully implicit finite-difference scheme. 
The discrete nonlinear equations for components in 
the multiphase system at gridblock or node i can be 
written in a general form:   
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(k = 1, 2, 3, …, Nc, Nc+1) and (i=1, 2, 3, …, N) 
where superscript k serves also as an equation index 
for all mass components with k = 1, 2, 3, …, Nc and  
k = Nc+1 denoting the heat equation; superscript n 
denotes the previous time level, with n+1 the current 
time level to be solved; subscript i refers to the index 
of gridblock or node I, with N being the total number 
of nodes in the grid;  ∆t is time step size; Vi is the 
volume of node i;  ηi contains the set of direct 
neighboring nodes (j) of node i; k

iA , k
iG , k

ijflow , and 
k
iQ  are the accumulation and decay/generation terms, 

respectively, at node i;  the “flow” term between 
nodes i and j, and sink/source term  at node i for 
component k or thermal energy, respectively, are 
defined below. 
 
Equation (9) has the same form regardless of the 
dimensionality of the system, i.e., it applies to one-, 
two-, or three-dimensional flow, transport, and heat-
transfer analyses.  The accumulation and 
decay/generation terms for mass components or 
thermal energy are evaluated using Equations (2), (3), 
and (4), respectively, at each node i. The “flow” 
terms in Equation (9) are generic and include mass 
fluxes by advective and dispersive processes, as 
described by Equation (5), as well as heat transfer, 
described by Equation (8).  In general, the mass flow 
term is evaluated as (Wu and Pruess, 2000): 

k
ijD,

k
ijA,

k
ij FFlowf +=   (k = 1, 2 , 3, …, Nc) (10) 

where k
ij,AF  and k

ij,DF  are the net mass fluxes by 
advection and hydrodynamic dispersion along the 
connection, respectively, with  
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where ijA  is the common interface area between 
connected blocks or nodes i and j; and the mass flow 
term, ij,Fβ , of fluid phase β  is described by a discrete 
version of Darcy’s law, i.e., the mass flux of fluid 
phase β along the connection is given by  
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where ijγ is transmissivity and is defined differently 
for finite-difference or finite-element discretization. 
If the integral finite-difference scheme (Pruess, 1991) 
is used, the transmissivity is calculated as 
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where Di is the distance from the center of block i to 
the interface between blocks i and j. The flow 
potential term in Equation (12) is defined as 

i2/1ji,ii ZgP +βββ ρ−=ψ   (14) 
where Zi is the depth to the center of block i from a 
reference datum. 
 
For mass component transport, the flow term or the 
net mass flux by advection and hydrodynamic 
dispersion of a component along the connection of 
nodes i and j is determined by 
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where nij is the unit vector along the connection of 
the two blocks i and j.  
 
The total heat flux along the connection of nodes i 
and j, including advective, diffusive, conductive and 
radiation terms, may be evaluated, when using a 
finite-difference scheme, by 
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In evaluating the “flow” terms in the above 
equations, (11)–(14), and (16), subscript ij+1/2 is 
used to denote a proper averaging or weighting of 
fluid flow, component transport, or heat transfer 
properties at the interface or along the connection 
between two blocks or nodes i and j. The proper 
weighting of mass fraction in Equation (11) for 
calculating advective mass flux is the objective of 
this work, which is discussed in detail below.  The 
convention for the signs of flow terms is that flow 
from node j into node i is defined as “+” (positive) in 
calculating the flow terms. Wu and Pruess (2000) 
present a general approach to calculating these flow 
terms associated with advective and dispersive mass 
transport and heat transfer in a multiphase system, 
using an irregular and unstructured multidimensional 
grid. 

Spatial and Temporal Weighting and Flux 
Limiter Schemes 
As shown in Equations (11) and (12), there are in 
general two types of spatial weighting schemes 
needed in modeling multiphase tracer transport. The 
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first one, ( )
)2/1ij

kX
+β

, in Equation (11) is used in 

estimating the averaged mass fraction for calculating 
advective flux, and the other ( )

2/1ijr /k
+βββ µρ  in 

Equation (12) is used in mobility weighting for the 
multiphase flow term. In the literature, flux-limiter 
schemes have been used not only for the first type of 
weighting, but also for the second type of  weighting 
(e.g., Blunt and Rubin, 1992; and Oldenburg and 
Pruess, 2000). However, it has been observed in 
practical simulations that the numerical smearing 
caused by saturation fronts is in general much less 
severe than that with dissolved concentration fronts. 
Therefore, in this work, we focus our attention on the 
mass fraction averaging or modeling concentration 
plume only, whereas the traditional, full upstream 
weighting is used in mobility or relative permeability 
averaging for estimating fluid displacement or 
saturation fronts.    
 
In addition to spatial weighting schemes, temporal 
weighting also needs to be addressed in numerical 
formulation. Commonly used temporal weighting 
schemes include fully implicit and Crank-Nicolson 
methods, while the fully explicit weighting is rarely 
used because of its strict  limitation in time step size.  
Among these schemes, the fully implicit method has 
proven itself to be most effective in handling 
numerical problems associated with solving highly 
nonlinear multiphase flow equations. In particular, 
the theoretical analysis of advective-dispersive 
transport through one-dimensional finite volume grid 
by Unger et al. (1996) indicates that the fully implicit 
scheme has no limitations in Courant number  under 
various temporal weighting schemes including flux 
limiters. They demonstrate how fully implicit 
temporal weighting leads to unconditionally stable 
solutions for linear advection-dispersion equation. It 
should be noted that fully implicit weighting is only a 
first-order approximation, with numerical errors of 
the same size as the time step.  However, it is our 
experience (in conducting hundreds and  hundreds of 
large, field-scale simulations of coupled multiphase 
flow and chemical transport) that fully implicit 
temporal schemes always result in stable solutions 
and that temporal discretization errors, caused by a 
fully implicit scheme, are  of secondary importance 
in simulation, when compared with many other 
unknowns. The key is to have a robust numerical 
scheme that leads to reliable and stable solutions 
under different spatial discretization and various 
physical conditions. Considering that it is impractical 
to define a Peclet or Courant number for detailed 
theoretical analyses in most field applications when 
using multidimensional, irregular, unstructured grids, 
fully implicit temporal weighting should be selected 
as a first choice. 
 

Selection of proper spatial-weighting schemes 
becomes very critical when dealing with coupled 
processes of multiphase flow, chemical transport, and 
heat transfer in a fractured medium. This is because 
fracture and matrix characteristics often greatly 
differ, e.g., there can be a many-orders-of-magnitude 
contrast in flow and transport properties, such as 
permeability and dispersivity. It is further 
complicated by the fact that there are no generally 
applicable weighting schemes or rules applicable to 
all problems or processes (Wu and Pruess, 2000).  
The weighting schemes that are used for flux 
calculation in this work are: 
• Upstream weighting for relative permeability  
• Harmonic or upstream weighting for absolute 

permeabilities for global fracture or matrix flow  
• Matrix absolute permeability, thermal 

conductivity, molecular diffusion coefficients for 
fracture-matrix interaction  

• Phase saturation-based weighting functions for 
determining diffusion coefficients  

• Upstream weighted enthalpies for advective heat 
flow  

• Central weighted scheme for thermal 
conductivities of global heat conduction 

 
Consider the schematic of Figure 1, representing a 
multidimensional irregular, unstructured grid of 
porous and/or fractured media. To calculate advective 
flux between nodes i and j,  we also need the 
information from a secondary upstream node 
(denoted as i2up), which is an upstream node to the 
upstream one, ups(i, j ), between nodes i and j (Unger 
et al., 1996; Forsyth et al., 1998). As shown in Figure 
1, the node i2up is determined by the maximum 
potential method in terms of maximum fluid influx 
into ups(i, j). Various weighting schemes for spatially 
averaged mass fraction or concentration for advective 
flux calculation between nodes i and j are 
summarized as: 
 

 
Figure 1.  Schematic for determining the second 

upstream block (i2up) for flow between 
block i and block j, using the geometric 
method and the maximum potential 
method 
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Upstream: 
( ) ( )
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where subscript ups(i, j) stands for the upstream node 
for fluid flow between nodes i and j.    
 
Central: 
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Several flux limiter or TVD schemes tested are as 
follows: 
 
van Leer limiter: 
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where ( )
)j,i(dwn

kXβ
is the mass fraction of downstream 

node of i and j, defined as 
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The van Leer weighting factor ( )ijrσ  is defined as 
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with the smoothness sensor, 
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where Dups(i, j) and Di2up are the distances from the 
center of block ups(i, j) or its upstream block i2up to 
their common interface along the connection between 
the blocks.  
 
MUSCL Method: 
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In (24), ε  is a small number, which prevents a zero 
divide. 
 

Leonard Method: 
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where the Leonard weighting factor ( )ijrσ  is defined 
as 
 

( ) { })3/)r2(,r2,2(min,0maxr ijijij +=σ  (29) 
 
with rij is also defined by Equation (22). 
 
The numerical implementation of these TVD 
schemes is made in the T2R3D code (Wu et al., 
1996) for simulation of tracer transport through an 
isothermal or nonisothermal system for this work. 

Numerical Solution Scheme 
There are a number of numerical solution techniques 
that have been developed in the literature over the 
past few decades to solve the nonlinear, discrete 
equations of flow and transport. When handling 
multiphase flow, multicomponent transport, and heat 
transfer in a multiphase flow system, investigators 
predominantly use a fully implicit scheme. This is 
because  the extremely high nonlinearity inherent in 
those discrete equations and the many numerical 
schemes with different level of explicitness that may 
fail to converge in practice. In this section, we 
discuss a general procedure to solve the discrete 
nonlinear Equation (9) fully implicitly, using a 
Newton iteration method.  
 
Let us write the discrete nonlinear Equation (9) in a 
residual form as  

{ }
0Qflow

t
VAGAR

1n,k
i

j

1n,k
ij

in,k
i

1n,k
i

1n,k
i

1n,k
i

i

=−−

∆
−+=

+

η∈

+

+++

∑
 (30) 

k = 1, 2, 3, …, Nc +1;  i = 1, 2, 3, …, N). 
Equation (30) defines a set of  (Nc+1) × N coupled 
nonlinear equations that need to be solved for every 
balance equation of mass components and heat, 
respectively.  In general, (Nc+1) primary variables 
per node are needed to use the Newton iteration for 
the associated (Nc+1) equations per node. The 
primary variables are usually selected among fluid 
pressures, fluid saturations, mass (mole) fractions of 
components in fluids, and temperatures. In many 
applications, however, primary variables cannot be 
fixed and must be allowed to vary dynamically to 
deal with phase appearance and disappearance 
(Forsyth et al., 1998). The rest of the dependent 
variables, such as relative permeability, capillary 
pressures, viscosity and densities, partitioning 
coefficients, specific enthalpies, thermal 
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conductivities, dispersion tensor, etc., as listed in 
Table 1, as well as nonselected pressures, saturations, 
and mass (mole) fractions, are treated as secondary 
variables.  
 
In terms of the primary variables, the residual 
Equation (30) at a node i is regarded as a function of 
the primary variables at not only node i, but also at 
all its direct neighboring nodes j. The Newton 
iteration scheme gives rise to 

 ( )( ) ( )p,m
1n,k

i1p,m
m m

p,m
1n,k

i xRx
x

xR +
+

+

−=δ
∂

∂
∑  (31) 

where xm is the primary variable m with m = 1, 2, 3, 
…, Nc+1, respectively, at node i and all its direct 
neighbors; p is the iteration level; and i =1, 2, 3, …, 
N.  The primary variables in (31) need to be updated 
after each iteration: 

1p,mp,m1p,m xxx ++ δ+=   (32) 
The Newton iteration process continues until the 
residuals 1n,k

nR +  or changes in the primary variables 

1p,mx +δ over an iteration are reduced below preset 
convergence tolerances.   
 
A numerical method is used to construct the Jacobian 
matrix for Equation (31), as outlined in Forsyth et al. 
(1995). At each Newton iteration, Equation (31) 
represents a system of (Nc+1) × N linearized 
algebraic equations with sparse matrices, which are 
solved by a linear equation solver. Note that when 
using the flux limiter schemes, as discussed in the 
last subsection, advective mass flux terms in the 
discrete equation (21)  may depend on primary and 
secondary variables beyond the direct neighboring 
nodes, such as  at node of i2up. In such a situation, 
the Newton iteration discussed here becomes inexact, 
because the Jacobian matrix does not include the 
contributions with respect to the primary variables 
beyond neighboring nodes. Nevertheless, converged 
solutions should be correct, because the residuals are 
exact. This omission in these Jacobian calculations 
may make solution convergence more problematic. 
However, many numerical tests have been made for 
multiphase tracer transport, and no significant 
numerical problems have been observed. 

Fractured Media 
The mathematical formulations and flux-limiter 
schemes discussed above are applicable to both 
single-continuum and multi-continuum media, as 
long as the physical processes involved can be 
described in a continuum sense within either 
continuum. When handling flow and transport 
through a fractured rock using the numerical 
formation of this section, fractured media (including 
explicit fracture, dual, or multiple continuum models) 
can be considered as special cases of unstructured 
grids of Figure 1. Then, a large portion of the work 

consists of generating a mesh that represents both the 
fracture and the matrix system under consideration. 
Several fracture and matrix subgridding schemes 
exist for designing different meshes for different 
fracture-matrix conceptual models (e.g., Pruess, 
1983).  
Once a proper unstructured grid of a fracture-matrix 
system is generated, fracture and matrix blocks are 
identified to represent fracture and matrix domains, 
separately. Formally they are treated identically for 
the solution in the model. However, physically 
consistent fracture and matrix properties, parameter 
weighting schemes, and modeling conditions must be 
appropriately specified for both fracture and matrix 
systems. 

APPLICATION 

One example is presented here to demonstrate 
application of the TVD schemes, as discussed above, 
in handling transport through fractured media. The 
sample problem is based on a two-dimensional site-
scale model developed for investigations of the 
unsaturated zone at Yucca Mountain, Nevada. This 
example shows transport of one conservative 
(nonadsorbing) tracer through unsaturated fractured 
rock using a 2-D, unstructured grid and a dual-
permeability conceptualization for handling fracture 
and matrix interaction.  
 
The 2-D west-east cross-sectional model grid, shown 
in Figure 2, has a total of 30,000 fracture-matrix 
gridblocks and 74,000 connections between them in a 
dual-permeability mesh. The potential repository is 
located in the middle of the model domain, 
discretized with locally refined grid (Figure 2), at an 
elevation above 1,100  m.  

 
Figure 2. Two-dimensional west-east cross-

sectional model domain and grid showing 
lateral and vertical discretization, 
hydrogeological layers, repository layout, 
and several faults incorporated 

The 2-D model uses the ground surface as the top 
model boundary and the water table as the bottom 
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boundary. Both top and bottom boundaries of the 
model are treated as Dirichlet-type boundaries, i.e., 
constant (spatially distributed) pressures, liquid 
saturations and zero initial tracer concentrations are 
specified along these boundary surfaces. In addition, 
on the top boundary, a spatially varying, steady-state, 
present-day infiltration map, as shown in Figure 3, 
determined by the scientists of the U.S. Geological 
Survey, is used in this study to describe the net water 
recharge, with an average infiltration rate of  about 5 
mm/yr over the model domain. In addition, an 
isothermal condition is assumed in this study. The 
properties used for rock matrix and fractures in the 
dual-permeability model, including two-phase flow 
parameters of fractures and matrix as well as faults, 
were estimated from field tests and model calibration 
efforts  (Wu et al., 2002).  
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Figure 3.  Net infiltration rate along the west-east 

cross-section model as surface water 
recharge boundary condition 

We consider a conservative liquid tracer migrating 
from the repository downward by advective and 
dispersive processes, subject to the ambient steady-
state unsaturated flow condition. A constant effective 
molecular diffusion coefficient of 3.2 × 10-11 (m2/s) is 
used for matrix diffusion of the conservative 
component. Transport starts with a finite amount of 
the tracer  initially released into the fracture elements 
of the repository blocks. After the simulation starts, 
no more tracer will be introduced into the system, but 
the steady-state water recharge from the top boundary 
continues. Eventually, all the tracer will be flushed 
out from the 2-D system through the bottom, water 
table boundary, by advective and diffusive processes.  
 
Figures 4 and 5 show normalized tracer concentration 
contours in the fracture continuum within the 2-D 
model at 10 years of tracer release, simulated using 
various weighting schemes of spatially averaged  
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Figure 4. Concentration distributions within the 2-

D model at 10 years, simulated using the 
central weighting scheme mass fraction 
for advective flux calculation.  

Comparisons of simulated concentrations between 
Figures 4 (central weighting) and 5 (TVD-MUCSL) 
show a large difference at the time of 10 years. Note 
that for this problem, all three TVD schemes 
implemented in this study give similar results, so 
only the results with MUSCL are shown for the TVD 
cases in Figure 5. Figure 6 presents  fractional 
cumulative mass breakthrough curves at the water 
table, also showing some significant difference 
between the results using the TVD schemes and the 
central weighting.  
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Figure 5. Concentration distributions within the 2-

D model at 10 years, simulated using the 
TVD (MUSCL) scheme 

Time (Y ears)

N
or

m
al

iz
ed

C
um

ul
at

iv
e

B
re

ak
th

ro
ug

h

10-1 100 101 102 103 104 105 1060

0.2

0.4

0.6

0.8

1

M U S C L
F lux Limiter
Leonard
C entral W eighting

 
Figure 6. Breakthrough curves of fractional 

cumulative tracer mass arriving at the 
water table, since release from the 
repository, simulated using the different 
weighting schemes 
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Overall, the simulation results indicate that at early 
time, such as in first 10 years (Figure 4), the central 
weighting scheme underestimates advective 
transport, while at later time (t > 100 years)  it 
overestimates advective transport, because of 
selecting too high or too low averaged concentration 
values.  In addition, the TVD schemes are tested and 
found to have much better numerical performance 
than the central weighting scheme with respect to 
taking larger time steps or stability.    

SUMMARY AND CONCLUSIONS 

We have investigated several TVD schemes by 
implementing them into the TOUGH2 family of 
codes, using multidimensional irregular unstructured 
grids. Our test results show  that such TVD schemes 
are able to reduce numerical dispersion effectively, if 
used properly. In addition, numerical performance 
with TVD schemes is significantly improved than 
commonly used central weighting and is comparable 
to fully upstream weighting. It is encouraging to note 
that under multiphase conditions using relatively 
course spatial discretization, these TVD schemes 
provide more accurate simulation results for 
modeling large-scale field tracer transport processes 
through heterogeneous, fractured rock.  
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Table 1. Constitutive Relationships and Functional Dependence 
Definition  Function Description 

Capillary pressure ( )βββ = SPP CC  In a multiphase system, the capillary pressure relates pressures 
between the phases and is defined as a function of fluid saturation. 

Equilibrium adsorption kk
d

k
s XKX ββρ=  

k
sX  is the mass of component k sorbed per mass of solids; and the 

distribution coefficient, 
k
dK , is treated as a constant or as a function 

of the concentration or mass fraction in a fluid phase  

Equilibrium partitioning kk
:

k K ββαα ω=ω  
k
αω  and k

βω  are the mole fraction of component k in phase α and β, 

respectively; and k
:K βα  is the equilibrium partitioning coefficient of 

component k between phases α and β. 

First-order decay constant 

T
n(2)l

2/1
k =λ  

T1/2 is the half-life of the radioactive component. 

Fluid density )X,T,P( k
βββ ρ=ρ  

Density of a fluid phase is treated as a function of pressure and 
temperature, as well as mass compositions (k = 1, 2, 3, …, Nc). 

Fluid saturation 1S =∑
β

β  
Constraint on summation of total fluid saturation. 

Fluid viscosity ( )kX,T,P βββ µ=µ  
The functional dependence or empirical expressions of viscosity of a 
fluid is treated as a function of pressure, temperature, and 
composition.  

Henry’s law k
w

k
H

k
g KP ω=   

k
gP is partial pressure of component k in gas phase; 

k
HK  is Henry’s 

constant for component k; and 
k
wω  is the mole fraction of component 

k in water phase. 

Mass fraction 1X
k

k =∑ β  Constraint on mass fractions within phase β. 

Partitioning coefficient ( )kk
:

k
: X,T,PKK βββαβα =  

depends on chemical properties of the component and is a function of 
temperature, pressure, and composition. 

Porosity ( ) ( )( )φ φ= + − − −o
r

o
T

oC P P C T T1  φo is the effective porosity at a reference pressure, Po, and a reference 
temperature, To;  and Cr and CT are the compressibility and thermal 
expansion coefficient of the medium, respectively. 

Radioactive decay tk
0

k keCC λ−
ββ =  

kCβ  is the concentration of component k in phase β and is equal to 

k
0Cβ at t = 0;  kλ  is the radioactive decay constant. 

Relative permeability ( )βββ = Skk rr  The relative permeability of a fluid phase in a multiphase system are 
normally assumed to be functions of fluid saturation. 

specific enthalpies of gas 

k
g

k
gk

g
k
g C

P
Uh +=  

k
gU  the specific internal energy of component k in the gas phase; 

k
gC  concentration of component k in gas phase (kg/m3). 

specific enthalpy of liquid 

β

β
ββ ρ

+=
P

Uh  
Internal energy, Uβ, of liquid phase β is a function of pressure and 
temperature. 

thermal conductivity  ( )β= SKK TT  The thermal conductivity of the porous medium is treated as a function 
of fluid saturation. 

 


