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1Abstract
Bayesian Approaches for Subsurface Characterization Using Hydrogeological andGeophysical DatabyJinsong ChenDoctor of Philosophy in Engineering-Civil and Environmental EngineeringUniversity of California at BerkeleyProfessor Yoram Rubin, ChairNear-surface investigations often require detailed mapping of spatial variability ofhydrogeological parameters. Conventional techniques for collecting densely sampledhydrogeological data are costly, time-consuming, and invasive; consequently, cost-e�ective and noninvasive geophysical methods can be used to provide additional in-formation for the subsurface. This study explores the use of hydrogeological andgeophysical data for site characterization within a Bayesian framework, and threecase studies are presented with emphases on di�erent aspects of subsurface inves-tigations. The �rst study explores the use of ground penetrating radar (GPR) to-mographic velocity, GPR tomographic attenuation, and seismic tomographic velocityusing data collected from the Oyster site (VA) for hydraulic conductivity estimation



2using the Bayesian method based on a normal linear regression model. Although thelog-conductivity displays a small variation and the geophysical data vary over only asmall range, results indicate that the geophysical data improve the estimates of thehydraulic conductivity and the improvement is the most signi�cant where prior infor-mation is limited. Among the geophysical data, GPR and seismic velocity are moreuseful than GPR attenuation. The second study considers a scale disparity problemin which small-scale resistivity logs and large-scale electromagnetic (EM) surveys col-lected from the Lawrence Livermore National Laboratory site (CA) are used to maptwo-dimensional resistivity �elds using a Bayesian method. Results reveal that thelarge-scale survey data enhance hydrogeological site characterization even when theyhave a relatively low resolution. The last study focuses on the issue of petrophysicalrelations between hydrogeological and geophysical data. A Bayesian model coupledwith a fuzzy neural network (BFNN) is developed to alleviate the di�culty of usinggeophysical data in lithofacies estimation due to non-linearity of cross correlation be-tween lithofacies and geophysical attributes. Results show that the BFNN model isthe best method among indicator kriging, indicator cokriging, and the fuzzy neuralnetwork without considering spatial correlation.
Professor Yoram RubinDissertation Committee Chair
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1
Chapter 1

Introduction
1.1 MotivationThe release and transport of contaminants from industrial, agricultural or wastedisposal activities is a major environmental concern due to the potential for contam-ination of water supplies and sensitive areas. The remediation of the contaminantsrequires identi�cation of natural heterogeneity of the geologic formation and detailedmapping of spatial variability of the hydraulic conductivity, for which densely sampleddirect measurements of the hydrogeological parameters are needed, especially whenthe aquifers under investigation are complex. Conventional techniques for collectinghydrogeological data rely heavily on borehole drilling that is invasive, costly, andtime-consuming. The use of the method is deemed necessary for collecting detailedinformation at some representative locations but is impractical for delineating spatialvariability of the parameters. Consequently, modeling of heterogeneity of the hy-drogeological parameters using hydrogeological measurements alone becomes di�cultand subject to a large degree of uncertainty. With poor site characterization, the re-mediation schemes may be over-designed or even inapplicable and hence unnecessarily



2increase the cost of the remediation.Geophysical methods that are noninvasive, cost-e�ective, and have a broad spatialcoverage along lateral directions can provide a large amount of additional informa-tion about the subsurface. These methods measure subsurface physical propertiesor their contrasts. Relations between hydrogeological and geophysical properties canallow those geophysical data to be used qualitatively in reconnaissance studies foridenti�cation of aquifer boundaries and stratigraphy or to be used quantitativelyat the advanced stage of site characterization for estimation of hydrogeological pa-rameters. Traditional methods for collecting hydrogeological data include core pointmeasurements and volume-averaged pumping tests. The core measurements havehigh resolution and a small supporting volume whereas the pumping tests have lowresolution and a large supporting volume, as shown in Figure 1.1. Geophysical meth-ods, however, often provide data with scales between the core measurements and thepumping tests. As a result, geophysical data bridge the information gap between thetwo traditional measurements in terms of resolution and volume of aquifer sampled.With the use of two- and three-dimensional geophysical data, a better characteriza-tion becomes possible, and this may lead to a signi�cant reduction of total cost forin-situ remediation of contaminants.



3

110�110�210�310�4 10�3 10�2 10�1 1 10 102 103Resolution (m)Cores Logs Radar CrossholeSeismic SurfaceSeismicWell TestsFigure 1.1: Comparison between resolution and volume of aquifer sampled for conven-tional core and well tests as well as for geophysical techniques. The vertical coordinateis the fraction of sampled aquifer volume [Rubin et al., 1998].



41.2 Statement of the ProblemSeveral problems exist in the use of geophysical data for estimation of hydrogeolog-ical parameters. The �rst one comes from the fact that geophysical methods directlymeasure geophysical properties, such as electrical resistivity and seismic velocity, in-stead of hydrogeological parameters, such as hydraulic conductivity and porosity.Petrophysical relations are needed to incorporate the geophysical data into estima-tion of the hydrogeological parameters. Although most geophysical attributes havephysical connections with hydrogeological properties, for unconsolidated sediments,the relations have not always been recognized or well-understood, even in the labo-ratory. They are often non-unique, site-speci�c, and a�ected by many compoundingfactors, which are very di�cult to measure or control in �eld conditions. Developingdata-driven petrophysical models for relating between geophysical data and hydroge-ological parameters is one of the goals of this dissertation.The second problem is due to the scale disparity between hydrogeological mea-surements and geophysical data and between di�erent types of geophysical data. Asshown in Figure 1.1, di�erent types of geophysical measurements often have di�er-ent resolution and supporting volumes, which are determined by the mechanics andacquisition parameters of the geophysical techniques such as source frequency, ac-quisition geometry, and sampling spacing. Because of ambiguity which arises fromgeophysical data interpretation, however, we often need to jointly use di�erent types



5of geophysical techniques at a given site. When using the multiple geophysical datafor estimation of hydrogeological parameters, we have to take into account the scaledi�erences. Chapter 3 of this dissertation is an e�ort at solving this problem. Wecombined the low-resolution electrical resistivity data obtained from crosshole elec-tromagnetic (EM) surveys and the high-resolution electrical resistivity data obtainedfrom borehole logging to generate two-dimensional resistivity images that can beused later to estimate hydrogeological parameters. The scale disparity also makes itdi�cult to infer petrophysical relations between geophysical attributes and hydroge-ological parameters from training data sets.The third problem results from measurement errors of hydrogeological data anduncertainty associated with acquisition and interpretation of geophysical data. De-veloping suitable assimilation models to account for the errors and the uncertainty isanother goal of the dissertation. In addition, it has been well-recognized that hydro-geological parameters and geophysical attributes usually have good spatial structures.How to incorporate the spatial correlation into estimation of hydrogeological param-eters is also an issue addressed in this dissertation.
1.3 Review of Previous WorkGeophysical techniques have been used in near-surface investigations for decadesand have become increasingly important recently due to the development of high-



6resolution crosshole tomography and the commercial availability of surveying tech-niques. Many e�orts have been made to jointly use geophysical and hydrogeologicaldata for site characterization. This section will brie
y review some of the previouswork along two di�erent lines. Section 1.3.1 reviews some commonly used geophys-ical methods with the focus on the principal of each method and its applications inenvironmental site characterization. Section 1.3.2 reviews several assimilation meth-ods used for combining geophysical and hydrogeological data with the focus on theadvantages and limitations of using those methods.1.3.1 Geophysical Characterization MethodsThe commonly used geophysical methods for site characterization include sur-face electrical resistivity, electromagnetic (EM) induction, ground-penetrating radar(GPR), seismic methods, and borehole geophysical methods. Each of these methodscan be used for di�erent �eld situations and for di�erent goals of site characterization.Electrical methods have been used in groundwater investigations for many years.These methods measure electrical resistivity, the ability of electrical current to 
owthrough materials, by inducing a time-varying current (DC) or very low frequencycurrent into the ground between two current electrodes. The measured resistivitycan be used qualitatively to map subsurface stratigraphy [Zodhy et al., 1974] and tolocate geological structures such as buried stream channels [Burger, 1992] because ofthe sensitivity of the current 
ow to the presence of geological layers. The resistivity



7measurements can also be used quantitatively to infer information about hydroge-ological parameters because of the physical connection between electrical resistivityand hydrogeological properties. Electrical conduction usually takes place in 
uids inconnected pore spaces, along grain boundaries, or within fractures, but not in the ma-trix of the materials. Electrical resistivity is a�ected by material texture, grain size,porosity, clay content, moisture content, and the resistivity of pore 
uid. All of thosefactors are related to hydraulic conductivity [Gassmann, 1951; Marion, 1990; Kli-mento and McCann, 1990; Knoll, 1996;]. As a result, electrical resistivity can be usedto estimate hydraulic conductivity or transmissivity in porous aquifers [Kelly,1977;Urish, 1981; Mazac et al., 1985].Recent applications of electrical resistivity methods are due to the signi�cantprogress in the development of crosshole electrical resistance tomography (ETR). Thismethod involves using a crosshole geometry, where electrodes are placed in boreholesand at the surface; the di�erences in voltage between potential electrodes are thenmeasured. Data acquisition of the method is automated and capable of recording 3500measurements per hour with only one technician [Rubin, 1998]. This e�ciency in datacollection enables us to use the method to monitor 
ow and contaminant transportprocesses [Alumbaugh et al., 2000] and movement of soil water content [Daily et al.,1992; Ramirez et al., 1993; Daily and Ramirez, 1995; Zhou et al., 2001].Electromagnetic (EM) methods have received much attention recently in ground-water and environmental site assessments due to the ability of the methods to detect



8conductive objects under the ground. Controlled-source inductive electromagnetic(EM) methods use a transmitter to pass a time-varying current through a coil ordipole on the earth surface. This alternating current produces a time-varying mag-netic �eld that interacts with the conductive subsurface to induce time-varying eddycurrents, which give rise to a secondary EM �eld. Attributes of the secondary mag-netic �eld, such as amplitude, orientation, and phase shift, can be measured by thereceiver. By comparing these collected attributes with those of the primary �eld, wecan detect subsurface conductors or distribution of electrical conductivity [Rubin etal., 1998].Since electrical conductivity is the inverse of electrical resistivity that can berelated to hydraulic conductivity, the measured conductivity data can be used toestimate hydrogeological parameters. For example, EM methods have been used toestimate soil water content [Kachanoski et al., 1988; Sheets and Hendricks, 1995]and to investigate the spatial variations of soil texture and pore 
uid [Kachanoski etal., 1988]. These methods have also been successfully used to detect both organicand inorganic groundwater contamination plums [Buselli et al., 1990]. Because aconductive subsurface environment or target is required to set up the secondary �eldthat can be measured by the receiver, the methods are suitable for detecting high-conductivity subsurface targets, such as salt water saturated sediments or clay layers,but unsuitable for detecting electrically resistive targets.Ground-penetrating radar (GPR) is a relatively new geophysical tool that has



9become increasingly popular due to its high resolution and the need to better un-derstand near-surface conditions. GPR methods use electromagnetic energy at highfrequencies (10 to 1000MHZ) to probe the subsurface, and the propagation of theradar signal depends on the electrical properties of the ground at the high frequency[Davis and Anna, 1989]. The methods measure the velocity and the attenuation ofthe radar waves, and these can be used to determine the dielectric constant or relativepermittivity, which is the major electrical property of geologic materials at high fre-quencies. Generally, GPR methods have poor performances in electrically conductiveenvironments, such as saturated systems or in systems dominated by the presenceof expanding clays, and have better performances in unsaturated coarse-textured ormoderately coarse-textured soil [Hubbard et al., 1997].GPR methods have found many applications in both saturated environments andunsaturated environments with substantial nonexpanding clay fractions. Knoll et al.[1991] used GPR methods to delineate near-surface conditions in a sand and gravelaquifer at Cape Cod site in Massachusetts. Wyatt et al. [1996] used the methods todetect shallow faults at the Savannah River site in South Carolina. Hubbard et al.[1997] used GPR data to estimate water saturation and permeability in unsaturatedzones for sand-clay mixtures. Greenhouse et al. [1993] and Brewster and Annan,1994] used the dielectric constants to detect contaminant transport in porous media.Additionally, GPR methods were also used to infer spatial variation in subsurface[Rea and Knight, 1998] and spatial correlation structure of hydrogeological parameters



10[Hubbard et al., 1999].Seismic methods have been used to aid in environmental site characterization formany years. These methods use arti�cially generated high frequency (100 to 500Hz)pulses of acoustic energy to probe the subsurface [Rubin et al, 1998]. The com-monly used seismic methods include seismic re
ection, seismic refraction and cross-hole transmission. The re
ection method is better to be used for detecting structuraland stratigraphic information about the subsurface. For unconsolidated and unsatu-rated materials, however, this is often di�cult due to the lack of well-de�ned velocitycontrasts in the ground. Seismic refraction methods sometimes are chosen in sitecharacterization to replace re
ection methods for determining the locations of thewater table and the top of bedrock and locating signi�cant faults because they areinexpensive. However, they yield much lower resolution than seismic re
ection andcrosshole methods [Lankston, 1990].Crosshole seismic methods have the highest resolution compared to other meth-ods, and this permits a very detailed estimate of seismic P-wave velocity structure[Rector, 1995]. These high-resolution seismic velocity data can be incorporated intoestimation of hydrogeological parameters. For example, Rubin et al. [1992] and Coptyet al. [1993] used seismic velocity together with hydraulic pressure data to map hy-draulic permeability. Hyndman et al. [1994] coupled seismic velocity data with tracerexperiment data to estimate lithofacies and hydraulic conductivity. Although not yetestablished as a �eld method, seismic imaging of organic contaminants in the labora-



11tory has provided a fundamental step toward the application of seismic tomographicimaging of interwell contamination [Geller and Myer, 1995].Borehole geophysical techniques as basic methods have been applied almost to allthe contaminant transport sites in the United States [Keys, 1997]. These methodscan obtain much more information from a well than can be obtained from drilling,sampling, and testing [Keys, 1989]. Geophysical logs provide continuous analog ordigital records that can be interpreted in terms of physical properties of soil texture,the contained 
uid, and even construction of the well. The various borehole logscan be used to estimate lithofacies or hydrogeological parameters along boreholes[Doveton, 1986; Rogers et al., 1992; Benaouda et al., 1999] or used in conjunction withsurface geophysical data to provide information about aquifer and hydrogeologicalparameters to a large extent [Lortzer and Berkhout, 1992; Copty and Rubin, 1995].1.3.2 Data Assimilation MethodsThe development of methods for combining hydrogeological and geophysical datareceives less attention than that of geophysical techniques in near-surface investiga-tions. Most of studies using geophysical data focus on the improvement of geophysicaldata acquisition and interpretation methods, not assimilationmodels. Due to the needfor better understanding of contaminant transport processes in porous media and theavailability of multiple sources of information for site characterization, however, ane�ective data assimilation method is required for the purpose of environmental site



12characterization. The following is a brief review of the methods used for incorporatinggeophysical data into estimation of hydrogeological parameters.Petrophysical or empirical models, if they are available and applicable, are oftenthe �rst choice for connecting geophysical data to hydrogeological parameters. Forconsolidated sediments, many petrophysical or empirical relations have been foundin the laboratory, which may be used to estimate hydrogeological parameters in �eldconditions [Mavko et al., 1998]. For unconsolidated sediments, however, obtainingreliable relations between geophysical measurements and hydrogeological parametersis very di�cult [Marion et al., 1992; Knoll, 1996; Bachrach and Nur, 1998; Bachrachet al., 2000]. The major reason is that di�erent types of geological materials inunconsolidated sediments have much smaller contrasts in geophysical attributes thanthe ones in consolidated sediments. Consequently, very few applications have beenfound so far to directly use the petrophysical or empirical models obtained fromthe laboratory for estimation of hydrogeological parameters in �eld conditions forunconsolidated sediments.Regression models, mostly linear regression models, were popular in the earlyapplications of geophysical data for estimation of hydrogeological parameters. Suchmethods have been used by Kelly [1977] and Mazac et al. [1985] for resistivity data,used by Han [1986] and Vernik and Nur [1992] for seismic data, and used by Topp etal. [1980] for ground-penetrating radar (GPR) data. These models divide availabledata into two parts, one for training and the other for testing. The testing results



13can be considered as the veri�cation of the trained regression model. Advantages ofusing these models are that they are simple and can be veri�ed directly using �elddata. Measurement errors and scale disparity between geophysical data and hydro-geological parameters are also implicitly considered in the �tted relations. However,the �tted models are site-speci�c and should be used with caution. In addition, thesemethods are considered as a deterministic approach, and the estimated values areoften considered as the trend, drift or mean of hydrogeological parameters [Kitanidis,1998].Inverse models have been used to estimate hydrogeological parameters from piezo-metric head measurements for many years [Yeh, 1986; Ginn and Cushman, 1990;Sun, 1994; McLaughlin and Townley, 1996]. The models were also used by Lortzerand Berkhout [1992] to combine seismic data and lithologic information for lithologyestimation and used by Hyndman et al. [1994] to combine seismic and tracer ex-periment data for hydraulic conductivity estimation. Such methods provide a betterway to account for the special hydrogeological characteristics of individual sites andhave the ability to incorporate a wide range of �eld information [McLaughlin andTownley, 1996]. Creating forward models when using the models for certain types ofgeophysical data, however, may be very di�cult or even impossible sometimes, suchas gamma-ray measurements. Additionally, ambiguity in geophysical data interpre-tation may also cause problems in constructing forward models. The potential ofusing inverse models for assimilation of hydrogeological and geological data still need



14further studies.Geostatistical models for site characterization have been used for decades to es-timate hydrogeological parameters using piezometric head and hydrogeological mea-surements at boreholes [Dagan, 1985; Rubin and Dagan, 1987]. Geophysical attributesand hydrogeological parameters in these models are considered as spatial randomfunctions, which form two- or three-dimensional random �elds; the measurements ofthe geophysical attributes and the hydrogeological parameters at some locations areconsidered as samples of the random functions from the random �elds. Using thosemeasurements or samples, we can �rst infer spatial structures of those random �elds,de�ned by variogram models and their associated parameters such as means, vari-ances and integral lengths. Then we can interpolate or extrapolate those geophysicaland hydrogeological data, using kriging or cokriging methods, to the locations wheredirectly measurements are not available. Similar to regression models, these modelsare also simple yet e�cient in cases where well-de�ned spatial structures exist andcan be derived from sampling data. However, cross correlations between the hydro-geological and geophysical data and between various types of geophysical data maynot always be identi�able from given measurements; they may be highly nonlinear.Bayesian methods provide a general framework for data assimilation [Box andTiao, 1973; Bernardo and Smith, 1994]. These methods have been shown byMcLaugh-lin and Townley [1996] to be consistent with numerous inverse models if prior infor-mation is considered. The use of these models for combining geophysical and hydro-



15geological data can be found in Lortzer and Berkhout [1992], Copty et al. [1993], andCopty and Rubin [1995]. The key focus of using the methods is the inference of thelikelihood functions. Many applications of Bayesian models rely on the assumptionsthat the multiple spatial random variables have multivariate normal distributions, butthis is not a general case. Under �eld conditions, we often need to infer site-speci�clikelihood functions directly from the in-situ hydrogeological and geophysical data.
1.4 Scope of the DissertationThis dissertation is divided into �ve chapters, including the introduction and thesummary given later in the dissertation. Each of Chapter 2 through 4 focuses on oneimportant aspect of subsurface characterization and includes a separate introduction,methodology, case study, and discussion or summary sections. These studies arecharacterized by three factors: 1) the hydrogeological and geophysical data used ineach chapter are either real-life �eld data or synthetic data closely mimicking �eldconditions, 2) the petrophysical relations between the hydrogeological parametersand the geophysical attributes are site-speci�c and derived directly from the trainingdata sets using data-driven models, 3) the assimilation of the hydrogeological andgeophysical data is performed using Bayesian models.Chapter 2 explores the use of ground penetrating radar (GPR) tomographic ve-locity, GPR tomographic attenuation, and seismic tomographic velocity for hydraulic



16conductivity estimation. The hydrogeological and geophysical data were collectedfrom the Narrow Channel Focus Area at the South Oyster site in Virginia and in-clude 
owmeter and slug test data at each well and GPR and seismic tomographicdata along some transects. The integration of those data was carried out by theBayesian method based on a normal linear regression model. Since the GPR andseismic tomographic data have very high resolution and small sampling volumes atthe site, the scale disparity between the hydraulic conductivity and the geophysicaltomographic data is relatively small. This allows us to derive the site-speci�c rela-tions between the hydraulic conductivity and the geophysical attributes from bothhydraulic conductivity and geophysical data available at each well using a data-drivenmodel. Although the log-conductivity displays a small variation (�2 = 0:30) and thegeophysical data vary over only a small range, results indicate that the geophysicaldata improve the estimates of the hydraulic conductivity. The improvement is mostsigni�cant where prior information is limited. Among geophysical data, GPR andseismic velocity are more useful than GPR attenuation.Chapter 3 considers a scale disparity problem. A Bayesian model is developedto combine small-scale resistivity logs with large-scale electromagnetic (EM) surveysdata for mapping two-dimensional resistivity �elds, which can be used later to inferhydrogeological parameters. The method is oriented towards the Lawrence LivemoreNational Laboratory project, where lithofacies and gamma-ray logs have good spa-tial structures but resistivity does not. Firstly, the small-scale or high-resolution



17resistivity data from boreholes are interpolated to crosshole areas using the site-speci�c relations among gamma-ray, lithofacies and resistivity obtained from �elddata. Secondly, the estimated resistivity is considered as the prior and updated bythe collocated large-scale resistivity data obtained from crosshole EM surveys. Therelation between small- and large-scale resistivity is a re
ection of the scale disparitybetween those data, and it becomes weak when the scale disparity is large. Finally,the updated resistivity estimate is compared to the corresponding prior estimate toevaluate the e�ectiveness and limitations of the Bayesian model. Results reveal thatthe proposed method enhances hydrogeological site characterization even when theresistivity surveys have a relatively low resolution.Chapter 4 focuses on the issue of petrophysical relations. A Bayesian model cou-pled with a fuzzy neural network (BFNN) is developed to alleviate the di�culty ofusing geophysical data in lithofacies estimation due to nonlinearity of cross correla-tion between lithofacies and geophysical attributes. The Bayesian model allows forthe incorporation of spatial correlation of lithofacies as well as the nonlinear crosscorrelation into lithofacies estimation. The prior estimate is inferred from lithofaciesmeasurements at boreholes using indicator kriging based on the spatial correlation,whereas the posterior estimate is updated from the prior using the geophysical databased on the nonlinear cross correlation. The key to using the model is the inferenceof the likelihood function, which is obtained from training data sets using a fuzzyneural network. The fuzzy neural network takes advantages of both fuzzy logic and



18neural networks. Fuzzy logic provides an approach to incorporate human knowledgeinto lithofacies estimation, and this knowledge may be used to justify the rules learneddirectly from data. Neural networks provide a powerful tool to �t nonlinear functionsfrom given input and output data with no or few assumptions about the form of thefunctions. The e�ciency of the method in lithofacies estimation is demonstrated bytwo synthetic case studies generated from measurements at the Lawrence LivemoreNational Laboratory site. Results show that the BFNN model is the best methodamong indicator kriging, indicator cokriging and the fuzzy neural network withoutconsidering spatial correlation.
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Chapter 2

Estimating the Hydraulic Conductivity atthe South Oyster Site from GeophysicalTomographic Data Using BayesianTechniques Based on a Normal LinearRegression Model
2.1 IntroductionHeterogeneity of hydraulic conductivity in porous media is a major control ofgroundwater 
ow and contaminant transport [Dagan, 1982; Gelhar and Axness, 1983].Modeling of this heterogeneity is di�cult and subject to a large degree of uncertaintydue to the lack of densely sampled in-situ hydrological measurements.Conventional borehole techniques such as 
owmeter and slug tests for collectinghydrological data are costly, time-consuming and invasive; therefore, a large e�ort isundertaken to explore the potential of using geophysical data to compensate for the



20scarcity of in-situ hydrological measurements [Rubin et al., 1992; Copty et al., 1993and 1995; Hubbard et al., 1997; Rubin et al., 1998; Ezzedine et al., 1999; Hubbard andRubin, 2000]. Geophysical data used for hydrogeological characterization often in-clude electrical resistivity [Kelly, 1977; Ahmed et al., 1988], seismic velocity [Rubin etal., 1992; Copty et al., 1993 and 1995; Hyndman et al., 1994] and ground penetratingradar (GPR) velocity [Hubbard et al., 1997 and 1999 ]. Methods for integration ofhydrological and geophysical data include regression models [Kelly, 1977] , cokrigingmodels [Ahmed et al., 1988], inversion models [Rubin et al., 1992] and Bayesian mod-els [Copty et al., 1993; Ezzedine et al., 1999] . Despite the di�erence in the methodsand the geophysical data, it has been widely recognized that the most di�cult part ofthe integration is tying hydrological measurements to geophysical data because of thescale and resolution disparity between hydrological and geophysical measurements[Ezzedine et al., 1999] , and because of their non-unique relationships due to the un-certainty associated with �eld data acquisition and interpretation [Urish, 1981]. Thischapter proposed an approach to dealing with this issue based on the normal linearregression model. It extends the previous work reported in Copty et al. [1993] andEzzedine et al. [1999], and its main novelty is in formulating the petrophysical modelsin a probabilistic fashion, using likelihood functions.This chapter explores the potential use of GPR tomographic velocity, GPR to-mographic attenuation and seismic tomographic velocity as well as hydrological mea-surements for estimating hydraulic conductivity. It is focused on the usefulness of



21geophysical measurements for hydraulic conductivity estimation and on the integra-tion of hydrological and geophysical data.The approach given in this chapter is to explore the correlations between thegeophysical attributes and the hydraulic conductivity, following the ideas exploredin Rubin et al. [1992], Copty et al. [1993], Hyndman et al. [1994] and Ezzedineet al. [1999]. Another approach to this problem is to analyze transient e�ects, forexample through time-lapse tomography [Shapiro et al., 1999]. This approach wasnot pursued here because it requires injecting 
uids, which can potentially in
uencethe geophysical signals and thus may have detrimental e�ects on the overall goals ofthe �eld experiments.This chapter is organized as follows. Section 2.2 introduces the South Oyster Site,available data at the site and some preliminary data analyses. Section 2.3 describesthe Bayesian method and the normal linear regression model. Section 2.4 exploresthe use of geophysical data within a Bayesian framework for estimating hydraulicconductivity. Discussion and conclusions are given in sections 2.5.



222.2 Site and Data Descriptions2.2.1 South Oyster SiteThe South Oyster Site is located near the town of Oyster on Virginia's EasternShore Peninsula between the Chesapeake Bay and the Atlantic Ocean. A �eld-scaleexperiment has been undertaken by a multi-disciplinary research team within anuncontaminated aquifer at the Oyster Site to evaluate the importance of chemicaland physical heterogeneity in controlling bacteria that are injected into the groundfor bioremediation purposes [DeFlaun et al., 2000] . The sediments at the SouthOyster Site consist of unconsolidated to weakly indurated, well-sorted, medium- to�ne- grained Late Pleistocene sands and pebbly sands. The upper 9 meters of theSouth Oyster Site consists of the Wachapreague Formation, which was deposited in ashallow, open marine to back-barrier environment, north of the tide-dominated mouthof the Chesapeake Bay [Mixon, 1985] . The water table at the South Oyster Site islocated approximately 3 meters below ground surface.Within the South Oyster Site two study focus areas exist: the South Oyster FocusArea and the Narrow Channel Focus Area (Figure 2.1). Locations of the focus areaswere chosen based primarily on groundwater chemistry: the South Oyster Focus Areais situated within a suboxic portion of the aquifer, while conditions at the NarrowChannel Focus Area are predominantly aerobic. Forced gradient chemical and bacte-rial tracer test experiments were performed within what is called the 'Aerobic Flow



23Cell' of the Narrow Channel Focus Area in 1999 [Johnson et al., 2001]; similar exper-iments will be performed within the 'Suboxic Flow Cell' of the South Oyster FocusArea in 2000. At both locations, extensive geological, geophysical and hydrologicaldata were and are being collected to characterize the subsurface prior to the tracer testexperiments. This study explores the use of geophysical tomographic data, collectedwithin the saturated portion of the Aerobic Flow Cell (approximately between depthsof 0-6.0 m below mean sea level [MSL]), for providing detailed hydraulic conductivityestimates there.The Aerobic Flow Cell layout within the Narrow Channel Focus Area is shownin Figure 2.2. Hydraulic conductivity measurements are available at the wellborelocations, indicated by circles, and geophysical tomographic pro�les are available be-tween several well pairs, as indicated by the solid lines. Descriptions of these availabledata are discussed in next section. The chemical and bacterial tracer injection wellis NCB2. Groundwater 
ow direction and geologic dip are aligned approximatelyparallel to the transect NCB2-NCM3, and geologic strike is aligned approximatelyparallel with the transect NCT3-NCT1. Twenty-four multi-level samplers were in-stalled between the wells NCB2 and NCM3, and NCT3 and NCT2 to detect thebacterial passage of chemical and bacterial tracers over time during the tracer testexperiments as described by Johnson et al. [2001]. The log-conductivity estimateswithin the Aerobic Flow Cell, obtained using geophysical tomographic data as de-scribed in this study, will be used to help constrain the stochastic numerical 
ow
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Figure 2.1: Location of the South Oyster Site and the Aerobic Flow Cell (GolderAssociates, 1998).



25studies being performed to understand the transport experiment results [Scheibe etal., 1999].2.2.2 Field SamplingHydraulic Conductivity Measurements from Flowmeter DataHydraulic conductivity values were calculated from 
owmeter and slug test datawithin the Aerobic Flow Cell. Electromagnetic borehole 
owmeter data were collectedfrom all wells whose locations are shown in Figure 2.2. Each well was approximately9.4 m deep and had two 3.05 m long screens positioned in the lower 6.1 m, or fromapproximately 0.5 m to 5.8 m below MSL [Waldrop and Hamby, 1998]. The 
owmeterdata provided relative hydraulic conductivity measurements at discrete intervals of0.15 m for each well. Slug test data, where available, were used to provide averagehydraulic conductivity values over the screened well intervals. Where slug test datawere not available, the geometric mean of the slug tests over the entire 
ow cell wasused. These average hydraulic conductivity values were then used to convert therelative hydraulic conductivity measurements, obtained from 
owmeter data, intoabsolute hydraulic conductivity values for that well [Molz and Young, 1993].
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Figure 2.2: Aerobic Flow Cell in the Narrow Channel Focus Area (the circles de-note 
owmeter measurement wells and the solid lines denote geophysical tomographicpro�les).



27Geophysical Measurements from Tomographic GPR and Seismic DataBoth GPR and seismic tomographic data were collected within the Aerobic FlowCell along the transects indicated in Figure 2.2. For tomographic acquisition geom-etry, GPR transmitting antenna (or seismic source) and GPR receiving antennas (orseismic geophones) are located in separate wellbores, and direct energy from a trans-mitting antenna in one wellbore is recorded by a receiving antenna located in theother wellbore. The transmitter position is changed and the recording repeated un-til both the transmitter and the receiver have occupied all possible positions withinthe two wellbores. The direct electromagnetic or seismic P-wave wave travel timebetween all transmitter/receiver positions, as well as the amplitude of the direct ar-rival, is obtained from the recorded data. The interwell area is then discretized intoa grid composed of cells or pixels, and inversion algorithms are used to transform therecorded travel time and amplitude information into estimates of velocity and atten-uation, respectively, at each pixel. The discretization that is chosen for the inversionis typically based on consideration of several factors including: the wavelength of thepropagating signal, expected material properties and their contrasts, acquisition ge-ometry including wellbore spacing and geophone spacing (which control propagationdistance, raypath density and illumination angles) and inversion damping parame-ters. The reader interested in di�erent types of geophysical inversion approaches andapplications is referred to Parker [1994], Williamson and Worthington [1993], andRector [1995].



28The seismic tomographic pro�les were collected along the same transects whereGPR tomographic data were collected (Figure 2.2. These data were collected usinga Geometrics Strataview seismic system with a piezoelectric source. The centralfrequency of the pulse was 4000 Hz, with a bandwidth from approximately 1000 to7000 Hz, rendering an average seismic wavelength of approximately 0.4 m. The sourceand geophone spacing in the wellbores was 0.125 m, which resulted in dense raypathcoverage of over 13,200 traces in the interwell area. Based on the seismic wavelength,small wellbore spacing of approximately 3-5 m, and dense raypath coverage over avariety of illumination angles, a discretization of 0.25 m x 0.25 m was chosen for thediscretization inversion. The travel times were picked for all source-receiver pairs.The travel time data were then inverted using a straight-ray algebraic reconstructiontechnique [Peterson et al., 1985] to produce seismic velocity estimates for each 0.25m x 0.25 m cellblock along all transects. The small velocity range observed in thedata suggests that distortion caused from ray bending should be minimal, and thatraypath density should be fairly evenly distributed in the interwell area.Seismic amplitudes can yield information about the attenuative properties of sub-surface sediments or rocks. In a manner similar to travel time inversion, amplitudeinformation can be extracted from the tomographic data and inverted for attenua-tion in the interwell area. Many theories exist to incorporate the great variety ofmechanisms that can in
uence seismic wave attenuation. For porous, granular, sedi-mentary rocks, the generally accepted mechanisms may be grouped into three broad



29categories: scattering attenuation, 
uid-
ow attenuation, and 
uid-matrix attenua-tion [Nihei, 1992]. Because of the variety of in
uences on the seismic amplitudes, it isoften di�cult to extract meaningful characterization information from seismic ampli-tude data. Additionally, seismic amplitudes are extremely sensitive to the presenceof trapped gas and the state of consolidation. The presence of a shallow water table,small amounts of organic material (potential sources of trapped gas), and varyingstates of consolidation of the Oyster sediments are suspected to have a�ected theseismic source radiation pattern and coupling, as well as the receiver properties. Ifnot adjusted, these radiation pattern and coupling variations often yield inversionartifacts [Vasco et al., 1996; Keers et al., 2000]. Because inversion artifacts wereobserved in the Oyster seismic attenuation tomograms, the con�dence in these datawas not high enough to use rigorously in this hydrological property estimation proce-dure. Use of the Oyster seismic amplitude data is left for future studies, after furtherinvestigation and pre-processing of the seismic radiation pattern and coupling e�ectshave been performed.The tomographic GPR data were collected using a PulseEKKO 100 system with200 MHz central frequency wellbore antennas. These data were collected using atransmitter/receiver spacing in the wellbores of 0.125 m, which again resulted in over13,200 traces per tomogram. The e�ective range of the radar propagation frequen-cies was 40-140 MHz, rendering e�ective GPR wavelengths of approximately 0.5 m.Although the wavelengths of the radar data are on average greater than those of the



30seismic data, the high signal to noise ratio of the radar data relative to the Oysterseismic data permitted inversion using the same discretization as was used for theseismic data of 0.25 m x 0.25 m. The similar discretization used for both the seis-mic and radar tomographic data inversions facilitated the hydrogeological parameterestimate computations. For the high radar frequencies employed and in the sandyenvironment at Oyster, the radar propagation velocities are primarily governed byvariations in the dielectric constant, and the amplitudes are primarily a�ected byvariations in dielectric constant and electrical conductivity [Davis and Annan, 1989]of the interwell sediments. Unlike the seismic amplitude data, the Oyster radar am-plitude radiation patterns and source-receiver coupling appeared to be consistent,and thus inversion was performed on both the picked travel times and amplitudesusing straight-ray algebraic reconstruction techniques [Peterson et al., 1985; Peter-son, 2000] to yield electromagnetic wave velocity and attenuation estimates for eachcellblock along all tomographic pro�les.2.2.3 Data AnalysisSince the goal of this study is to explore and test the use of geophysical tomo-graphic measurements for hydraulic conductivity estimation, only those geophysicaldata at the wellbores are used, where hydraulic conductivity data are available. Geo-physical data at these wells were approximated by the ones at the cellblocks locatedone column away from the wells rather than directly near the wells on their surround-



31ing transects. This is because geophysical data located directly near the wells maybe a�ected by the presence of disturbed zones around the wells [Peterson, 2000]. Forsome wells such as NCB2, there are three transects passing them; the averaged valuesof the geophysical data extracted from each transect are used. Consequently, geophys-ical data are obtained at each well location with an interval of 0.25 m along verticaldirections. Since log-conductivity was sampled with an interval of 0.15 m rather than0.25 m, the log-conductivity data at the vertical locations where geophysical datawere also sampled for each well are interpolated from the direct hydraulic conduc-tivity measurements. Finally, a data set in which each log-conductivity value hascorresponding co-located geophysical data is created, which will be used later in thischapter.Hydraulic ConductivityThe histogram of natural log-conductivity at the Aerobic Flow Cell is shown inFigure 2.3(a). It is asymmetric and negatively skewed, and suggests the existenceof two sub-populations of hydraulic conductivity|high- and low-conductivity zones[Copty et al., 1995; Welhan and Reed, 1997].The spatial structure of the log-conductivity was identi�ed through covarianceanalyses and the results are shown in Figure 2.4. The vertical covariance given inFigure 2.4(a) can be �tted with an exponential covariance model with a range of0.6 m and a sill of 0.30 for small lags (<0.6 m), but hole-type structure appears at
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Figure 2.3: (a) Histogram of log-conductivity (hydraulic conductivity in m=h), (b)Histogram of GPR velocity (cm=ns) (c) Histogram of GPR attenuation (1=m) (d)Histogram of seismic velocity (km=s).



33large lags (>0.6 m). The hole e�ect may be the outcome of repetitive sequences orperiodic variations [Isaaks and Srivastava, 1989]. As pointed out by Journel andHuijbregts [1978], the hole e�ect may also be due to an arti�cial pseudo-periodicityof available data, and can be ignored in practice if not very remarkable. The lateralcovariances along the directions perpendicular and parallel to the geologic strike areshown in Figure 2.4(b) and Figure 2.4(c), respectively. Both covariances are �ttedwith exponential models with a range of 5 m.Geophysical DataHistograms of GPR velocity, GPR attenuation and seismic velocity are shown inFigure 2.3(b,c,d), respectively. Similar to log-conductivity (Figure 2.3(a)), negativeskewness is observed in the histograms of GPR and seismic velocity. This suggestscorrelations between log-conductivity and GPR and seismic velocity. The GPR andseismic velocity change over small ranges and exhibit small variations (coe�cient ofvariation CV=1.7% for GPR velocity and CV=1.4% for seismic velocity) comparedto the GPR attenuation (CV=12.5%).Correlations Between Log-Conductivity and Geophysical DataPhysical connections between log-conductivity and GPR velocity, GPR attenu-ation and seismic velocity exist, but not straightforward. For instance, hydraulicconductivity correlates to porosity, as evidenced by the Kozeny-Carman equation
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35[Carman, 1956], and GPR velocity, GPR attenuation and seismic velocity also relateto porosity [Knoll, 1996; Marion, 1990; Mavko et al., 1998].Figure 2.5 depicts scatter-plots of log-conductivity versus GPR velocity, GPRattenuation and seismic velocity based on the data available at the Aerobic FlowCell. The log-conductivity correlates with GPR and seismic velocity, and it gener-ally increases as GPR and seismic velocity increase. The GPR attenuation and log-conductivity appear to be uncorrelated, and the GPR attenuation associated withlow log-conductivity (log(k) < �2) seems to be less variable.
2.3 MethodologyEstimating log-conductivity su�ers from much uncertainty due to the lack ofdensely sampled in-situ hydrological measurements, and due to the absence of uniquerelations between log-conductivity and geophysical data. To address this uncertainty,a stochastic framework is adopted in which log-conductivity, GPR velocity, GPRattenuation and seismic velocity are considered as spatial random functions.2.3.1 Bayesian FormulaA Bayesian methodology is developed in this section for estimating log-conductivityfrom hydrological and geophysical data. Let the random variable Y denote log-conductivity and Vg, � and Vs denote GPR velocity, GPR attenuation and seismic
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37velocity, respectively. All data are mean-removed and normalized by their corre-sponding standard deviations. The log-conductivity estimate at a given location x,in terms of probability density function (pdf), is obtained using the Bayes theoremas follows [Box and Tiao, 1973; Kitanidis, 1986]:f 0Y (y(x)) = CL(y(x)jvg(x); �(x); vs(x))fY (y(x)); (2.1)where y(x) is an unknown value of Y being estimated at x, vg(x), �(x) and vs(x) arethe measured values of Vg, � and Vs at the same location, C is a normalizing coe�-cient, L(y(x)jvg(x); �(x); vs(x)) is the likelihood function given vg(x), �(x) and vs(x),and f 0Y (y(x)) and fY (y(x)) are the posterior and prior pdfs of Y at x, respectively.Note that only co-located geophysical data have been used to update the prior pdfsince they are most informative compared to the measurements at adjacent locations[Copty et al., 1993].The Bayesian method has been used for many years in the water resources �eld.One of the earliest applications in groundwater hydrology was provided by Kitanidis[1986] for analyzing parameter uncertainty in estimation of spatial functions. In thatwork, the mean and covariance matrix of the posterior distribution were derived ana-lytically by choosing a prior distribution that is conjugate to the likelihood function inthe sense that the posterior has the same form as the prior. Following the same line,Copty et al. [1993] applied the method to subsurface characterization of hydrologicalproperties using geophysical data, and the analytical forms of the posterior mean andvariance were also obtained under certain assumptions. This study develops a new



38approach, which allows for large 
exibility in the form of the likelihood function andposterior pdf, to get numerical rather than analytical posterior mean and variance.The Prior pdfThe prior pdf fY (y(x)) was estimated based on the hydraulic conductivity datausing kriging [Journel, 1989]. A similar approach was also used by Copty et al. [1993]and Ezzedine et al. [1999] . The prior distribution is normal if Y is multivariatenormal [Deutsch and Journel, 1998] .The Likelihood FunctionThe likelihood function L(y(x)jvg(x); �(x); vs(x)) plays a central role in the Bayesianmethod and was inferred from the hydrological and co-located geophysical data. Itis expressed as follows [Bernardo and Smith, 1994]:L(y(x)jvg(x); �(x); vs(x)) = fVg(vg(x)jy(x)) � f�(�(x)jy(x); vg(x))�fVs(vs(x)jy(x); vg(x); �(x)); (2.2)
where f(�j�) denotes a conditional pdf. If Vg, � and Vs are independent such that f�(�(x) jy(x); vg(x)) = f� (�(x) jy(x)) and fVs(vs(x)jy(x); vg(x); �(x)) = fVs(vs(x)jy(x)),the inference of the likelihood function becomes simple since each conditional pdf in-volves only two variables. This is however not the case in the present study where



39there are four dependent variables (Y , Vg, � and Vs) and the prior pdf needs to beupdated based on all the co-located geophysical data.2.3.2 Normal Linear Regression ModelThe normal linear regression model [Stone, 1995] provides a systematic approachto the inference of the conditional pdfs shown in equation 2.2. A similar approach hasalso been suggested by Kitanidis [1991] to model a linear drift of a spatially dependentvariable, such as log-conductivity. This section will demonstrate the inference offVs(vs(x)jy(x); vg(x); �(x)), and the method can be applied to the other functionsappearing in equation 2.2.In the normal linear regression model, the seismic velocity Vs at x is assumedto be normally distributed with mean � and variance �2. The mean � is assumedto be a member of the linear function space G whose basis functions consist of mdistinct monomials g1(x), g2(x), � � �, gm(x), formed from combinations of powers andproducts of y(x), vg(x) and �(x), such as 1, y(x), vg(x), �(x), y2(x), v2g(x), �2(x),y(x)vg(x), y(x)�(x) and vg(x)�(x). It is modeled as follows:�(x) = mXi=1 �igi(x); (2.3)where �i is a coe�cient of basis function gi(x), i = 1; 2; � � � ; m. The variance �2 istaken to be a constant, independent of y(x), vg(x) and �(x). The �nal set of basisfunctions is determined by following a model selection procedure, given later in this



40section.Estimation of � and �2The mean function �(x) and the variance �2 are estimated from the data (vs(xj),y(xj), vg(xj), �(xj)), j = 1; 2; � � � ; n, where y(xj) is the log-conductivity at locationxj, and vs(xj), vg(xj) and �(xj) are the dimensionless co-located seismic velocity,GPR velocity and GPR attenuation, respectively.Estimating �1, �2, � � �, �m is achieved by minimizing the residual sum of squaresRSS = nXj=1 (vs(xj)� �(xj))2: (2.4)Let �= (�1; �2; � � � ; �p)T and Z = (vs(x1); vs(x2); � � � ; vs(xn))T , where the exponent Tdenotes the transpose operator. The estimate �̂ of �, which minimizes equation 2.4,is given by �̂ = (DTD)�1DTZ; (2.5)where D is a design matrix, given by0BBBBBBBBBBBBB@
g1(x1) g2(x1) � � � gm(x1)g1(x2) g2(x2) � � � gm(x2)� � � � � � � � � � � �g1(xn) g2(xn) � � � gm(xn)

1CCCCCCCCCCCCCA : (2.6)
Once �1, �2, � � �, �p are estimated, the mean and the variance of fVs(vs(x)jy(x);



41vg(x); �(x)) are de�ned as follows:̂�(x) = mXi=1 �̂igi(x); (2.7)�̂2 = 1n�m nXj=1 (vs(xj)� �̂(xj))2: (2.8)It is clear that the estimate �̂2 of the variance in equation 2.8 is stationary andindependent of locations. The estimate �̂(x) of the mean function in equation 2.7,however, depends on y(x), vg(x) and �(x) and thus on the location x.Selection of Basis FunctionsSelecting and eliminating basis functions is the key to the normal linear regressionmodel. The initial set of the basis functions consists of all possible distinct monomialsof y(x), vg(x) and �(x) with a degree of 4 at most. The �nal set is obtained fromthe initial set by deleting some of the initial basis functions based on certain criteriadescribed in the following.Removing or retaining a basis function gi(x) (1 � i � m) from the initial set isbased on testing of the null hypothesis Ho : �i = 0, at the common testing level 0.05.The statistic u = �̂i=SE(�̂i) is �rst computed, where SE(�̂i) is the standard error of�̂i, which is the i-th element in the diagonal of the matrix �̂2(DTD)�1 (�̂2 is obtainedfrom equation 2.8 and D from equation 2.6). This statistic follows the t-distributionwith n�m degrees of freedom, based on the properties of the normal linear regressionmodel [Stone, 1995]. Consequently, the p-value, de�ned by 2(1 � tn�m(juj)) where



42tn�m is the probability function of the t-distribution with n�m degrees of freedom,can be calculated and compared to the testing level 0.05. If the p-value is larger than0.05, the null hypothesis is accepted and gi(x) is removed from the basis function set;otherwise, the null hypothesis is rejected and gi(x) is retained.The procedure of deleting basis functions is an iterative process, which is exe-cuted as follows: (1) �tting a model �(x) as shown in equation 2.3 to the sampleddata and obtaining �̂i (equation 2.5) and SE(�̂i) (i = 1; 2; � � � ; m); (2) computingtheir corresponding p-values; (3) comparing all the p-values with 0.05; (4) removingthe basis function with the largest p-value from the initial set. The procedure is re-peated until no members of the basis function set can be removed. The same methodis also applied to determine the other pdfs, which compose the likelihood function(equation 2.2).
2.4 Hydraulic Conductivity Estimation2.4.1 Outline of the ApproachTo apply and test the previous approach, the hydraulic conductivity and geophys-ical data available at the Aerobic Flow Cell are split into a training set and a testingset. To avoid the bias in selecting the testing set, each well shown in Figure 2.2 is inturn considered as a testing well; thus there are ten di�erent combinations of trainingand testing sets. For each of those combinations, the steps outlined in Figure 2.6 are



43followed, which can be grouped into three categories:1. Prior estimation: The spatial correlation structure of log-conductivity is �rstinferred from the hydraulic conductivity data of the training set and the meanlog-conductivity and its variance at each testing location are then estimatedusing kriging. The prior estimate is a random variable having the normal dis-tribution with the mean and the variance.2. Posterior estimation: The conditional pdfs, which form the likelihood functionas shown in equation 2.2, are derived from both hydraulic conductivity andgeophysical data of the training set using the normal linear regression model.The posterior pdf is obtained by following equation 2.1.3. Evaluation: Various statistics of the prior and posterior pdfs are compared withthe actual measurements to evaluate the proposed model. More details on thatare given in the subsequent sections.
2.4.2 Estimating the Hydraulic Conductivity Using GPR Ve-locityFigure 2.7 compares the log-conductivity measurements at well NCS7 with themeans of the prior pdfs and the posterior pdfs updated using its co-located GPRvelocity only. The improvement of the posterior mean estimates is not signi�cant,
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47Table 2.1: Comparisons of prior and posterior standard deviationsPrior PosteriorTesting Well standard deviations standard deviations Reduction(%)�prior �post (�prior � �post)=�priorNCS7 0.47 0.38 19NCS9 0.42 0.32 24NCS11 0.47 0.37 21NCS18 0.49 0.37 24NCM3 0.60 0.42 30NCB2 0.53 0.38 28NCS24 0.55 0.40 27NCT1 0.59 0.42 29NCT2 0.52 0.39 25NCT3 0.53 0.40 25posterior pdfs updated using GPR velocity for each well shown in Figure 2.2. Theprior variances are estimated from kriging, and the posterior variances are computedfrom the posterior pdfs using numerical integration:�2post(x) = Z (y(x)� hY (x)i)2f 0Y (y(x))dy; (2.9)where hY (x)i is the mean of the posterior pdf f 0Y (y(x)) at x. For all the testing wells,the standard deviations are signi�cantly reduced by the use of GPR velocity, and thereductions at wells NCM3 and NCT1 are most evident because their prior estimatesare less informative due to the relatively large distances of these wells from the wellsused for calculating the priors.Figure 2.9 shows the 95% con�dence intervals at well NCM3 for prior and posteriorestimates. The errors predicted by the prior model are on the conservative side, and at



48each testing location, the updating provides more narrow bounds, which are consistentwith the actual errors.2.4.3 Estimating the Hydraulic Conductivity Using GPR Ve-locity, GPR Attenuation, and Seismic VelocityThis section explores the e�ciency of using GPR velocity, GPR attenuation andseismic velocity in the hydraulic conductivity estimation. Since the addition of GPRattenuation and seismic velocity after using GPR velocity did not lead to furtherchanges in the estimates of the mean log-conductivity in the current study, the dis-cussion focuses on prior and posterior variances of all the ten testing wells.Figure 2.10 compares the averaged actual errors over the ten testing wells withthe averaged standard deviations of prior and posterior pdfs along depth and overthe ten testing wells for di�erent combinations of geophysical data. The actual errorsare the spatial averages of absolute di�erences between actual and estimated valuesalong each testing well. It is evident that the standard deviations of the model usingthe hydraulic conductivity data only are much larger than the actual errors, but withthe addition of various types of geophysical data, the standard deviations consistentlydecrease until they are of the same order as the actual errors.To evaluate the e�ciency of geophysical data in reducing uncertainty, di�erentcombinations of geophysical data are used in the hydraulic conductivity estimation,



49

1 2 3 4 5
−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

N
at

ur
al

 L
og

 C
on

du
ct

iv
ity

1 2 3 4 5
−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

Negative MSL (m)

N
at

ur
al

 L
og

 C
on

du
ct

iv
ity

Upper bound

Lower bound

Upper bound

Lower bound

Prior estimates

Posterior estimates

Measurements

Measurements

(a) Prior Estimates at NCM3

(b) Posterior Estimates at NCM3

Figure 2.9: 95% con�dence intervals for testing well NCM3.



50

0.3

0.35

0.4

0.45

0.5

0.55

0.6

E
st

im
at

io
n 

er
ro

rs

Standard deviations

Actual errors

Prior GPR velocity GPR velocity &
GPR attenuation

GPR velocity &
GPR attenuation &
Seismic velocityFigure 2.10: Comparison of the standard deviations and actual errors, which arethe space averages along the wells of the absolute di�erences between actual and estimated values.



51and calculate their reductions in the standard deviations, given by�prior � �post�prior � 100%; (2.10)where �prior and �post denote the vertical averages of the standard deviations of theprior model and of the posterior model at a testing well, respectively. Table 2.2summarizes the averaged reductions over the ten testing wells for di�erent models.GPR and seismic velocity were found to be more useful than GPR attenuation as onlyone type of geophysical data is used. The zero reduction in the standard deviations byGPR attenuation re
ects either that the current method does not e�ectively accountfor the non-linear relationship between the log-conductivity and the GPR attenuation,or that the GPR attenuation is non-informative at this site. As two or more types ofgeophysical data are used, the average reductions in the standard deviations increasebut only incrementally. This is the outcome of the various degrees of correlationsthat exist between the various types of data which leads to redundancy in data andhence to only minor improvements.
2.5 Discussion and ConclusionsThis chapter paper explored the use of geophysical tomographic data for hydraulicconductivity estimation using a Bayesian framework. The prior estimates were in-ferred from the hydraulic conductivity data measured at wellbores, and the posteriorestimates were obtained by updating the prior using co-located geophysical data.



52Table 2.2: Reductions of the standard deviations using various types of geophysicaldataNumber of Data Types Data Types Average Reduction Standard Errors(%) (%)1 vg 25.3 3.5� 0.0 N/Avs 29.2 3.52 vg; � 28.7 3.6vg; vs 31.9 2.7�; vs 31.0 4.13 vg; �; vs 34.0 4.1vg GPR velocity, vs seismic velocity and � GPR attenuatio nBoth the prior and the posterior estimates were compared with the actual measure-ments to evaluate the usefulness of geophysical data for hydraulic conductivity esti-mation. The key �ndings of this study are summarized below.Geophysical tomographic data hold the potential to improve estimation of hy-draulic conductivity even when log-conductivity displays small variations and geo-physical data vary over narrow ranges. This is possibly true also for domains of largevariability, since large variability implies large contrasts in the geophysical measure-ments and consequently, better correlations between the hydraulic conductivity andthe geophysical measurements. Thus, the advantages of using geophysical data in thehydraulic conductivity estimation may become more evident, as shown in Rubin etal. [1992], Copty et al. [1993], Hyndman et al. [1994], Hubbard et al. [1997], Ezzedineet al. [1999] and Hubbard and Rubin [2000].The Bayesian approach coupled with the normal linear regression model is e�ective



53in combining geophysical data into hydraulic conductivity estimation. Petrophysicalmodels relating hydraulic conductivity to geophysical measurements are often non-linear and hard to de�ne [Hyndman et al., 1994; Ezzedine et al., 1999], yet well-de�nedmodels are critical for successfully employing geophysical data in the estimation. Inthis study, petrophysical models are summarized in the form of likelihood functions,and each of the likelihood function is expressed as the product of several conditionalpdfs (equation 2), which were de�ned using the normal linear model. This methodalleviates the di�culty commonly encountered in the inference of petrophysical mod-els for multivariate dependent variables by following a systematic model selectionprocedure. Another advantage of the method is that the normal linear model pro-vides 
exibility in �tting the non-linear relations between hydraulic conductivity andgeophysical measurements since the likelihood functions can be of an arbitrary shapeeven if each of the conditional pdfs (equation 2) are assumed to be normal. However,this method is limited in situations where each of the conditional pdfs (equation 2)is multimodal and asymmetrical. In this case, other techniques, such as described inEzzedine et al. [1999] and Hubbard and Rubin [2000]., are needed.Using site-speci�c petrophysical models, as done in this study, rather than em-pirical relations obtained in the laboratory is a rational and e�cient way to employgeophysical data in estimation of hydraulic conductivity. Petrophysical relations be-tween hydraulic conductivity and geophysical measurements in unconsolidated sed-iments are more di�cult to obtain compared to those in consolidated sediments or



54rocks [Marion, 1990; Knoll, 1996; Bachrach and Nur, 1998; Bachrach et al., 2000] .No empirical models are currently available to relate hydraulic conductivity to geo-physical measurements in unconsolidated sediments, due to the disparity between thefrequencies used in the laboratory and those employed in the �eld.
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Chapter 3

Bayesian Method for HydrogeologicalCharacterization using Borehole andGeophysical Data: Theory andApplication to the Lawrence LivemoreNational Laboratory Site
3.1 IntroductionCombining ground-surface or crosswell geophysical surveys with well logs for en-hancing the quality of subsurface characterization has been the goal of recent studies.The primary motivation has been the recognition that geophysical surveys o�er uniqueopportunities for improving crosswell interpolation, and are particularly promising insituations of data scarcity. Hyndman et al. [1994] developed an inversion algorithmthat employs both seismic crosswell travel times and solute tracer concentration toestimate the interwell geology and therefore the hydraulic parameters. Sheets and



56Hendricks [1995] used regression techniques to build a site-speci�c petrophysical re-lationship between the soil water content estimated from borehole neutron probesand the bulk electrical conductivity of the soil estimated from electromagnetic (EM)induction surveys, and this model was then used for mapping the soil water content.Daily et al. [1992] conducted an in�ltration experiment to build a site-speci�c re-gression model between the resistivity and the moisture and showed the potentialcapability of Electrical Resistivity Tomography (ERT) to monitor capillary barriersperformance and 
ow in the vadose zone. Doyen [1988] used cokriging to estimateporosity from surface seismic data and well logs. Cassiani et al. [1998] includedseismic tomography data and sonic data using a geostatistical approach to improvethe hydraulic conductivity estimation. Lucet and Mavko [1991] combined crosswellseismic tomography, logs and petrophysical relationships between porosity, velocityand clay content to estimate porosity and lithofacies. Rubin et al. [1992] and Coptyand Rubin [1995] used a Bayesian approach and maximum likelihood principles tocombine seismic velocity with sparsely measured hydraulic conductivity and pressurefor the purpose of mapping the spatial distribution of the hydraulic conductivity.Hubbard et al. [1997] used a similar approach to incorporate the spatial distributionof dielectric constant obtained from ground penetrating radar (GPR) to estimate soilsaturation and permeability in the vadose zone. More recently Hubbard et al. [1999]combined acoustic tomography with borehole data to estimate the spatial covariancesof the log-conductivity.



57A few observations based on these studies are as follows: (i) No universal meth-ods or petrophysical models are available for converting geophysical attributes tohydrogeological properties; (ii) The most challenging problem is tying well-loggingmeasurements to the geophysical surveys. This issue involves problems of scale dis-parity between di�erent measurements and inconsistencies in the methods used fordata acquisition and interpretation. The last point is manifested by noticing thatresistivity at the Lawrence Livemore National Laboratory (LLNL) site was measuredusing several tools with di�erent support volumes and some of them lead to dramat-ically di�erent results.This chapter investigates the use of geophysical surveys for mapping lithofaciesand thus soil properties in the subsurface using a Bayesian approach. The studyfocuses primarily on the issues associated with the assimilation of weakly or non-linearly correlated data with di�erent spatial resolutions in a geologically complexenvironment.Section 3.2 introduces the LLNL superfund site, followed by geostatistical anal-yses of the data. A petrophysical relationship between lithofacies and geophysicalattributes is also presented. Section 3.3 outlines in detail the proposed approach fordata assimilation, and section 3.4 introduces the synthetic electromagnetic survey.Section 3.5 discusses Bayesian updating of pre-simulated lithofacies and resistivityrandom �elds and evaluates the e�ectiveness of this method, and some �ndings ofthis study are summarized in section 3.6.



583.2 Site Description, Sources of Data, and Geosta-tistical Analysis3.2.1 Lawrence Livermore Superfund SiteVolatile organic compounds (VOC) were used at the LLNL superfund site (Fig-ure 3.1) as solvents when the site was an active Naval Air Force Base in the 1940's.Fuel petroleum hydrocarbons associated with a gasoline spill have also contaminatedthe underlying aquifer. The VOCs are classi�ed as mainly Trichloroethylene (TCE),Tetrachloroethylene(PCE) and Chloroform. Tritium and Chromium are also presentbut in smaller concentrations [Noyes, 1991]. The site is located in an unconsolidatedalluvial basin. The hydrogeology of the area is very complex, but a considerableamount of geological, geophysical, hydraulic and geochemical data are available. Thedata provide a unique opportunity to study the relationship between hydraulic con-ductivity and sediment texture. This study focuses on the area near treatment facilityD (TFD) shown in Figure 3.1, and the detailed locations of the boreholes used in theanalysis are depicted in Figure 3.2a.The contaminants are distributed within a thick, complex sequence of unconsoli-dated alluvial sediments [Blake et al., 1995]. A hydrostratigraphic analysis has beenconducted to divide this sequence of layers into hydrostratigraphic units (HSUs).These latter are de�ned as sedimentary sequences whose permeable layers show evi-



59

Figure 3.1: Site map of LLNL showing treatment facility (TF) areas and total volatileorganic compounds (VOCs) contoured without respect to depth [Blake et al., 1995].
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Figure 3.2: (a) Location of the wells available for the present study in TFD. Nine wellsare depicted and labeled as 1205, 1206, 1208, and 1250 through 1255. (b) Verticalcross section over all hydrostratigraphic units (HSUs) through all wells depicted on(a). Vertical dash lines represent missing data, and HSUs are referred by their nameHSU 1 through 6.



61dence of hydraulic connectivity, using several complementary sources of information[Blake et al., 1995], including chemical (concentration in ground water and soil), geo-logical (lithological core description), geophysical (wire-line borehole electrical logs),and hydrogeological (hydraulic well tests, hydraulic communication between layers).Thicker aquitards were also de�ned as HSUs, while minor aquitards de�ne HSUboundaries across which little or no vertical hydraulic leakage takes place (Figure3.2b).3.2.2 Lithological and Geophysical Raw DataThe study focuses on the cross section between wells 1206, 1208, 1205, 1252, 1250,and 1251-1254 (Figure 3.2a) within HSU2 as shown in Figure 3.2b. Types of datacollected along the wells include geophysical and lithofacies well logs, which havedi�erent spatial resolutions, varying from 3 cm to 15 cm, along the vertical direction.Spatial statistics of the geophysical attributes and lithofacies are inferred from all thedata available at those wells.The collected geophysical log data include induction resistivity, short and longnormal resistivity, spontaneous potential, single point resistance, guard resistivity,caliper, and gamma-ray, among others. A general description of those log types isgiven by Keys [1997]. Lithofacies were classi�ed as 16 di�erent types, including gravel,clay, sand, silt, and their mixtures, such as, gravely clay and clayey sand. To simplifythe lithofacies mapping and because the main concern is to map the high and low



62hydraulic conductivity zones, only two main classes will be used: 1) silt, includingsilt, clay, and their mixtures, and 2) sand, including sand, gravel, and their mixtures.3.2.3 Geostatistical well log analysisSince HSU2 is not horizontal or not de�ned by constant thickness (Figure 3.2b),the vertical coordinates were normalized by the average thickness of the HSU, whichis approximately 17 m (Figure 3.3). Indicator semivariograms were used to describethe spatial variability of lithofacies based on a binary representation for sand and silt,and semivariograms were used to describe the spatial variability of gamma-ray (G)and resistivity (R). Those variables were investigated with and without log transfor-mation. Semivariograms of other geophysical attributes within each lithofacies werealso investigated, but only the statistics of these three variables are presented becausethey form the basis of this method.Lithofacies Indicator SemivariogramsBased on the lithofacies classi�cation and adopting an indicator coding of 0 forsand and 1 for silt, a geostatistical analysis was performed. Figures 3.4a and 3.4bshow the vertical and horizontal indicator semivariograms. Because the vertical semi-variogram was computed after normalizing the depth by the thickness of HSU2, themaximum lag is equal to the average thickness. The volume fractions of silt (p) andsand (1� p) are 0.48 and 0.52, respectively. The sills of the semivariograms are 0.25,
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64which is approximately equal to the theoretical value of the variance p(1 � p). The�tted theoretical models are exponential with a range of 1.5 m in the vertical directionand 30 m in the horizontal direction.Resistivity Measurement AnalysisThe analogies between the 
ow of electrical current and 
uid through porous mediahave made electric logging of formation resistivity a commonly employed techniquein geophysical prospecting [Keys, 1997]. Since a crosswell electromagnetic resistivitysurvey is considered at the LLNL site, resistivity well logs were used as the primarylink for correlating the tomographic survey with other soil properties.Semivariograms of induction resistivity, guard resistivity and short and long resis-tivity were investigated, but well-de�ned, long-range patterns of spatial correlationof the resistivity were not found. Despite the apparent lack of the spatial correlation,the combination of induction resistivity with gamma-ray and lithofacies logs o�ers anopportunity for indirect projection of gamma-ray and lithofacies pairs into resistivity.Induction resistivity among all the resistivity logs was chosen as the primary can-didate for correlating with the resistivity survey based on several reasons. (1) Themeasurement procedure does not require conductive 
uid in the borehole or directphysical contact with the formation. (2) Induction tools minimize the contributionof the borehole, invaded zone and surrounding formations on the measurement. (3)Induction logs are automatically corrected for skin e�ect during recording. (4) Al-
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Figure 3.4: Indicator experimental and theoretical semivariograms: (a) vertical di-rection and (b) horizontal direction. Both theoretical semivariograms are found to beexponential.



66though induction tools were designed for nonconductive borehole environments, theywere found to yield excellent measurements in water-based mud, provided that thewater is not too salty, the formation is not too resistive, and the borehole diameteris not too large [Keys, 1997]. The induction log measurements at the LLNL are ofexcellent quality, and this reinforced the previous choice.Gamma-Ray AnalysisGamma-ray logs measure naturally occurring gamma emissions around the bore-hole. The sources of the radioactive decay series in nature are primarily Potassium40, Uranium 238 and 235, and Thorium 232 [Serra, 1984]. Potassium 40 is by far themost abundant radioactive isotope found in sediments. As the content of Potassium40 increases, the response of the gamma-ray probe increases. Gamma-ray responsedecreases from shale and clay, to silt-stone, to sandy silt-stone, to sandstone andgravel.Conversion of gamma-ray measurements to shaliness helps to remove inconsis-tencies in the data introduced by using di�erent tools and calibration techniques[Doveton, 1986; Hill, 1986]. Shaliness for unconsolidated rock is given by [Serra,1984]: S = 0:083[23:7IG � 1]; (3.1)



67where IG is the gamma-ray index de�ned as follows [Serra, 1986]:IG = G �GMinGMax �GMin : (3.2)Figures 3.5a and 3.5b depict the vertical and horizontal semivariograms of theshaliness and their corresponding �tted models. The best �t was found to be theGaussian model with a nugget of 0.011 m and ranges of 2.5 m in the vertical directionand 25 m in the horizontal direction. Integral scales are set to 1.46 m (' 1.5 m) inthe vertical direction and 14.43 m (' 14.5 m) in the horizontal direction.Shaliness vs. Resistivity RelationshipFigure 3.6a displays a cross-plot of the resistivity and the shaliness. Two mainclusters are shown, corresponding to the di�erent lithofacies. It suggests that resis-tivity/shaliness pairs are useful for lithofacies identi�cation. The overlap between thesand and silt clusters indicates that a unique identi�cation of lithofacies based onresistivity and shaliness is not possible for all pairs. The main reason for the overlapbetween the two clusters is data reduction: the lithofacies classi�cation originallyconsisted of 16 members, but now only two. Despite the ambiguous interpretationof several pair combinations, it appears that this cross-plot is a good analytical tool.This is one of the fundamental results of this analyses so far because it suggests asystematic approach for tying the resistivity survey with well logging information,which is fully developed in Section 3.3.
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Figure 3.5: Shaliness experimental and theoretical semivariograms: (a) vertical di-rection and (b) horizontal direction. Both theoretical semivariograms are found to beGaussian.
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70Figure 3.6a was obtained using all well log data within the HSU2. The use ofshaliness instead of gamma-ray activity considerably improved the clustering analysis.This analysis has been applied to other HSUs as well, and a behavior similar to Figure3.6a was observed in all the cases.
3.3 Bayesian Data AssimilationIn an ideal situation, the geophysically measured attributes may correlate wellwith the hydrogeological ones, such as permeability, and the conversion of the geo-physical survey to a hydrogeological distribution map is straightforward. In a morerealistic situation, such as the one described here, the conversion of the geophysi-cal attributes to the hydrogeological ones is convoluted and non-unique. Couple ofdi�culties exist in the implementation of the geophysical survey. Firstly, the surveyresistivity is of relatively low resolution, but high-resolution permeability images needto be developed. This causes a scale disparity problem. Additionally, although thedatabase available at the site was developed over many years, some types of data arestill not available. For example, the cores were not tested for permeability.The purpose of this section is to develop a conceptual data-driven approach forlithofacies mapping based on the well log data. This approach is general in its basicprinciples, but meanwhile is site-speci�c since the employed petrophysical models arenot universal. The general approach is stochastic, which is justi�ed given the large



71uncertainty associated with crosswell interpolation, with the petrophysical models,and with the interpretation of the geophysical surveys. The rationale for this approachis based on the following observations:1. Resistivity and shaliness can be used for lithofacies identi�cation through thecross-plot (Figure 3.6a). Once a type of lithofacies is determined, further map-ping of hydrogeological properties can be pursued.2. Facies identi�cation based on the shaliness-resistivity cross-plot is non-uniquedue to some overlap between the sand and silt clusters.3. Borehole resistivity measurements display a short correlation range, and it isimpractical to develop spatial images of the resistivity using crosswell geosta-tistical interpolation.4. Shaliness displays a well-de�ned spatial structure. It can be used for projectingresistivity measurements indirectly through a combination of geostatistical in-terpolation/simulation techniques, in conjunction with the nonlinear correlationwith the resistivity, as expressed through the cross-plot (Figure 3.6a).Based on these observations, an approach that consists of sequentially generatinga series of collocated attributes is proposed. At the basis of the hierarchy, imagesof the lithofacies are generated, conditional to well logs and possibly also to thesurvey resistivity. Each lithofacies image serves then as the basis for generatinga series of shaliness images, again conditional to well data. The shaliness images



72are then used to correlate the survey resistivity with the hydrogeological attributesobtained experimentally. Since all the generated images are conditioned to the welldata and have the same underlying spatial structure, they are physically plausible.The variations between the images provide a measure of the spatial variability anduncertainty associated with the estimation. The focus here is on resistivity estimation,but it can be converted to porosity and hydraulic conductivity through well-knownmodels such as Archie's, Waxman-Smits', Kozeny-Carmen's [Mavko et al., 1998], orthrough site-speci�c calibration curves [ Daily et al., 1992].3.3.1 Outline of the approachFigure 3.7 is a 
ow chart showing the proposed approach, which includes thefollowing four steps.Step 1: Generating lithofacies images using sequential indicator simulation(SIS)The lithofacies is de�ned through an indicator variable I according to [Rubin,1995]: I(x) = 8>>><>>>: 1 if x is in silt0 otherwise (3.3)Note that boldface letters denote vectors, i.e., x is a location coordinate vector. Lower-case i is a realization of the spatial random function (SRF) I, which is assumed
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74stationary and characterized through its unconditional expected value:EfIg = p; (3.4)where E denotes the expected value operator and p is the volume fraction of silt. Thespatial structure of the variable is shown in Figure 3.4a and 3.4b and de�ned throughthe semivariogram: 
I(x;x0) = 12Ef(I(x)� p)(I(x0)� p)g; (3.5)where x and x0 are two location vectors.The unconditional statistics de�ne the crudest level of probabilistic characteriza-tion. A more advanced characterization is possible through the conditional momentsof I. These statistics are the cornerstone of the SIS algorithm [Deutsch and Journel ,1998; Rubin and Bellin, 1998]. The SIS algorithm consists of computing the expectedvalue of I conditional to the borehole data:pc = EcfIg = EfIjfmeasurementsgg (3.6)with a superscript c denoting conditioning.A realization of I can be drawn once pc is de�ned because I is binary and pc isstatistically exhaustive. The process of computing pc and drawing realizations is donesequentially over a grid. Spatial continuity is maintained by conditioning I on bothwell data and the previously generated values. Speci�cally,pc = p+ NXn=1�n(I(xn)� p); (3.7)



75where the weights �n are obtained by solving the following system of linear equations:NXn=1�n
I(xm;xn) = 
I(xm;x); m = 1; � � � ; N: (3.8)The important point to note is that N , the number of lithofacies measurements,includes all the observations as well as all the values previously generated at otherlocations.Step 2: Generating shaliness imagesThis step is similar in principle to the previous one. The di�erences are in thefact that (i) the shaliness S is not a binary variable and (ii) the spatial structureof the shaliness may be di�erent between the sand and silt lithofacies; i.e. 
Sji, thesemivariogram of the shaliness S, depends on the lithofacies i = 0 or 1:
Sji(x;x0) = 12Ef(S(xji)�mSji)(S(x0ji)�mSji)g: (3.9)The univariate and spatial statistics of the shaliness were discussed in Section3.2. Here the conditional mean and variance of S are computed, which uniquely de-termines the Gaussian distribution of the shaliness at location x, using the krigingequation. With the use of a Gaussian random generator, a local value for S is drawnfrom the distribution. De�ning the shaliness S through its mean mSji and its semi-variogram 
Sji for a given lithofacies i, the conditional mean mcSji and variance �2cSjiof the shaliness are given by: mcSji = NXl=1 �lS(xlji); (3.10)



76�2cSji = �2Sji � NXl=1 �lCovSji(xl;x); (3.11)where the covariance is identi�ed by CovSji(xl;x) = �2Sji�
Sji(xl;x), and the weights�l are obtained by solving the following system of linear equations:NXl=1 �lCovSji(xm;xl) = CovSji(xm;x); m = 1; � � � ; N: (3.12)All points l; m = 1; � � � ; N are located within the lithofacies i.Step 3: Computing the resistivity prior pdfsOnce lithofacies (sand or silt) at location x is identi�ed and the correspondingshaliness is assigned, a prior pdf for the resistivity fR(x)(rjI = i; S = s) can bede�ned through Figure 3.6a. R and S denote the space random functions (SRFs) ofthe resistivity and the shaliness, respectively, and r and s denote their correspondingrealizations. Figure 3.6b illustrates the joint pdf of R and S given I = 0 (sand) andthe marginal pdfs fR(rjI = 0) and fS(sjI = 0). Conditioning further on S = s0 leadsto fRjS(rjS = s0; I = 0), which is the Bayesian prior. Scarcity of data led to conditionon ranges of S values rather than on a single value. Figure 3.8 shows examples offR(x)(rjI = i; 0:3 � s < 0:4), fR(x)(rjI = i; 0:4 � s < 0:5), and fR(x)(rjI = i; 0:5 �s < 0:6) for i = 0; 1.
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78Step 4: Updating fR(x)(rjI = i; S = s) based on crosswell resistivity survey�(x)De�ning fR(x)(rjI = i; S = s) = f 0R(x)(r) for brevity and given collocated surveyresistivity �(x), the posterior pdf f 00R(x)(rj�) can be de�ned through Bayes' rule [Boxand Tiao, 1973]: f 00R(x)(rj�) = CRL(rj�)f 0R(x)(r) (3.13)where L(rj�) is the likelihood function and CR is a normalized factor de�ned as [Boxand Tiao, 1973] CR = �Z 1�1 L(rj�)f 0R(x)(r)dr��1 (3.14)In general, � is de�ned over a support volume larger than the support volumeof r. Note that in the case of a high resolution geophysical survey, �(x) ! r(x),and Bayesian updating is unnecessary. In this case, � can simply be converted tothe hydrogeological properties of interest if a petrophysical model is available. Thatconversion will be as reliable and accurate as the petrophysical model used for con-version. This is however not a general case, and the alternative is to update f 0R(x)(r)given �. Typically, � is de�ned by a block of scale � 3 m or greater, and the estimateof R is expected to have a scale of � 1 m. The inference of the likelihood function,L(rj�), is critical for the success of the updating and discussed in Section 3.5. Oncef 00R(rj�) is de�ned, a realization of R at x can be drawn. The entire process is repeatedfor all x until a complete image of the resistivity �eld is completed.



79An attractive property of Bayesian updating is that the posterior f 00R(x)(r) is atleast as informative as f 0R(x)(r). In the case of a totally non-informative likelihoodfunction, equation (3.13) yields f 0R(x)(r) = f 00R(x)(r). It is emphasized that the methoddoes not always guarantee better estimates for a couple of reasons. Firstly, theBayesian approach provides a pdf, not a single valued estimate. Secondly, the im-provement achieved in the posterior pdf is dictated by the quality of external factorssuch as the accuracy of the geophysical survey and the petrophysical model.A modi�cation of step 1 is appropriate and useful if the lithofacies images canalso be conditioned on the resistivity. As is apparent from Figure 3.6a, the lithofaciesimages can be improved through the resistivity survey: sand tends to be character-ized by high resistivity and silt by low resistivity, although there is some overlap atmidrange values. This approach calls for Bayesian updating of pc as well, throughthe relationship pc0 = CIL(Ij�)pc; (3.15)where L(Ij�) is the likelihood function, of a similar nature to (3.13), only relating �to I rather than R. CI is a normalized factor similar to CR (3.14).3.3.2 Synthetic \True" DatabaseThe concept outlined in Section 3.3.1 is demonstrated here using a synthetic ex-ample, generated to simulate closely the conditions of HSU2. Figure 3.9a shows arealization of HSU2 lithofacies conditional on the lithofacies observed at the wells.



80The �eld is 230 m in the horizontal direction and 17 m in the vertical direction.Realizations of the shaliness and resistivity �elds, generated based on the previouslydescribed method, conditional on borehole data, are given in Figure 3.9b and 3.9c.The spatial statistics used are those described in Section 3.2.
3.4 Electromagnetic SurveyingField EM surveying is a complex mapping of the detailed, high-resolution R(x)distribution into a low-resolution �(x) �eld. In reality, the geophysical response isdistorted by both data acquisition and the inversion process.An electromagnetic survey was conducted at LLNL through polyvinyl chloride(PVC) cased wells. Two surface to borehole pro�les were measured with a surfacetransmitter loop (frequency 11.3 kHz) and a vertical magnetic coil receiver placedin well 1250. The pro�les were in the region between wells 1250-1251 and 1250-1252 shown in Figure 3.2. Seven cross-well EM data sets were collected. A verticalmagnetic coil transmitter (frequency of 9.6 kHz) was placed in well 1250 and 1251.From well 1250, �ve data sets were collected with a vertical magnetic receiver placedsuccessively in wells 1251 through 1255. The last two data sets were collected betweenwells 1251-1253 and wells 1251-1254. All data sets from the crosswell EM survey havebeen processed, but results are not yet available. To explore the Bayesian updatingapproach, synthetic surveys of the resistivity are simulated.
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82The theoretical foundation of the EM survey is based on Maxwell's wave propa-gation equations as given in Appendix A. These equations couple the electric �eld tothe magnetic one. Under reasonable approximation of low variability of the resistivitybetween the sand and the silt bodies (Figure 3.6a), the wave propagation problemcan be reduced to an electric current di�usion problem. Identical problems have beenconsidered in 
uid 
ow in porous media [Dagan, 1989] and 
ow of electric currents[Abramovich and Indelman, 1995]. Borrowing from their results and considering thetwo-dimensional survey, the electrical conductivity �b of a block which covers nx bynz small-scale blocks (Figure 3.10), where nx is the number of blocks in x directionand nz in the z direction, is given by the geometric mean:�b = 0@ nxnzYl;m=1�l;m1A 1nxnz ; (3.16)where �l;m are the small-scale blocks. This formula is applicable for blocks thatare large relative to the characteristic length scale of resistivity heterogeneity. Inthe present case, since the characteristic length of the spatial variability is small,geometric averaging appears to be an appropriate homogenization procedure.From simple algebra, � = �Qnxnzl;m=1Rl;m� 1nxnz (see Appendix A). Hence for the pur-pose of this study, the resistivity of a block detected in a survey equals the geometricaveraging of the small-scale resistivity. nx = nz = 3; 6; 9 will be considered. Figures3.11a and 3.11b show results of the synthetically surveying resistivity �eld shown inFigure 3.9c using di�erent resolutions. As the resolution decreases, small-scale detailsbecome obscure and fuzzy, and the range of resistivity values detected narrows.
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Figure 3.10: Upscaling small-scale block conductivities �l;m, l = 1; � � � ; nx; m =1; � � � ; nz into survey scale block conductivity �b.3.5 Synthetic Case StudyThe cross section shown in Figure 3.3 is investigated in this case study, assumingthat Figures 3.9a to 3.9c, which were generated conditional to the borehole data, arethe \true" images of that cross section. A geophysical survey of the same cross sectionis simulated using equation (3.16). The goal of the case study is to test the capabilityof the method described in Section 3.3 to reconstruct the base case's images whilebene�ting from the resistivity survey.Typical images obtained using prior pdfs are only shown in Figures 3.12a to 3.12c.It is noted that these images are in good agreement with the corresponding images(Figures 3.9a to 3.9c) only in the well-sampled areas, on the right-hand side of theimages. Figures 3.12a and 3.12c will be updated following the methods outlinedin section 3.3.1. Updated images will be compared to the assumed \true" imagesdepicted in Figures 3.9a and 3.9c.
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863.5.1 Indicator Likelihood Functions and Lithofacies ImageUpdatingEquation (3.15) requires to infer the likelihood function L(Ij�). To identify L,a \training set" is used. The idea is to identify a portion of the survey area thatwill be drilled and cored post survey to yield a set of collocated measurements (�; i).The dimension of the training set area should be determined such that the surveyrepresents the entire range of conditions expected over the entire surveyed area. Thesampled area needs to be ergodic in terms of bivariate (�; i) statistics. That usuallyimplies a dimension of several integral scales vertically, along cored wells. � measuredclose to the wells can also be considered as located at the well itself. An alternativethat is not pursued here is to derive the likelihood function analytically, based onupscaling rules [Copty and Rubin, 1995]. In the present application, the well-sampledarea near well 1250 (right-hand side of Figure 3.3) was set to be the \training set",and the much less sampled area near well 1205 (left-hand side of Figure 3.3) was setas the \testing set".L(Ij�) is determined for a given I = i and � = �0 by scanning the set of collocatedpairs (i; �0) and computing the conditional probability Prob[� = �0jI = i]. Equation(3.15) is then used to update the lithofacies image (Figure 3.12a) using di�erentresistivity survey resolutions. Images of the \testing set", obtained based on equation(3.15) for nxnz = 3�3, 6�6 and 9�9 resistivity surveys, are practically of the same
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 0m 100mFigure 3.13: Posterior lithofacies image of the "testing set" (left-hand side of Fig-ure 3.12a, using (3.15) and 3� 3 resistivity survey (Figure 3.11a).quality as without updating and di�er only by a fraction less than 1% from the priorlithofacies (Figure 3.12a), even in case of high-resolution resistivity survey (3 � 3)(Figure 3.13). This outcome is a manifestation of the e�ect of the homogenization,which obscures the resistivity-lithofacies relationship. A large number of resistivitycombinations can lead to the same � and hence to a non-unique relationship between� and the lithofacies.
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m.The e�ect of updating the resistivity based on surveys with di�erent resolutions



89is demonstrated in Figure 3.15. It shows that the prior and posterior resistivitypdfs at arbitrary points within the silt and sand lithofacies for various resolutions ofthe resistivity survey. The maximum bene�cial e�ect is obtained, not surprisingly,through the high-resolution survey, but the positive impact of conditioning on � isdiscernible even at the low-resolution surveys. The trend of reduction in impact withpoorer resolution is evident, and this is an outcome of the di�use and non-informativenature of the likelihood function as the discrepancy between the survey scale and thedesired resolution scale increases.Note that conditioning R on � does not imply that the randomly generated valueswill average exactly to yield � unless special measures are taken. To honor preciselythe surveyed value �, a constraint on the generated value is introduced so that thegenerated r values over any volume corresponding to � will average exactly to yield�. The procedure is outlined in Appendix B.Figures 3.16a and 3.16b depict the updated resistivity �elds for nxnz = 3� 3 and9 � 9 resistivity survey. These �gures should be compared with the \true" image(Figure 3.9c, left part) and with the image generated based on the prior pdfs (Figure3.11c). It is obvious that the resistivity surveys have a signi�cant positive impact,particularly at the high resolution.
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Figure 3.15: E�ect of the resolution of the nxnz resistivity survey on the posteriorpdf's (prior pdf's are also plotted). The bias in the variance and the mean decreaseswith the increase of the resolution of resistivity survey (from 12� 12, 9� 9, 6� 6, to3� 3). The black box denotes "true" resistivity values. Prior and posterior pdf's forshaliness between 0:1 and 0:2 in silt (left, I = 1), and sand (right, I = 0).
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923.5.3 E�ectiveness of the Bayesian UpdatingTo evaluate the e�ectiveness of the updating procedure, the following statistic isanalyzed: Uk = jrk �m00jjrk �m0j 8>>><>>>: Uk < 1; successeful updatingotherwise, unsucesseful, (3.17)where k is a running index over all the points outside the wells, r is the actualresistivity (Figure 3.9c), m00 is the mean of the posterior pdf f 00R(x)(x), andm0 the meanof the prior pdf f 0R(x)(x). The ratio U compares the performance of the posterior andthe prior pdfs. U smaller than 1 indicates a successful updating procedure; otherwise,it is a di�use likelihood and hence a non-informative survey. Figure 3.17 depicts thevariation of U , as a function of the survey resolution. For completeness, statisticswere also computed for resistivity surveys of 2�2 and 12�12 block resolution. It hasbeen found that U decreases with decrease in resolution, in line with Figures 3.15aand 3.15b.
3.6 SummaryThis study investigated some problems associated with combining resistivity to-mography and resistivity well logging. The focus on resistivity rather than on hydro-geological properties stems from the observation that properties such as permeabilityand porosity can be derived from the resistivity based on theoretical or empirical,
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Figure 3.17: Percentage of number of successes (equation (3.17)) of the Bayesianupdating approach for di�erent survey resolutions and di�erent errors in the surveys.



94site-speci�c models. The study was conducted by considering conditions as realisticas possible, and the real-life data collected at the LLNL site and the synthetic dataalong some cross sections were analyzed.A Bayesian model was used for data assimilation in this study, and the methodallows for conditioning on what is clearly a set of complex and nonlinear petrophys-ical models relating between di�erent geological attributes. This method comprisesseveral steps, each of which intended to explore, model and utilize the aspects ofthe data that are needed for relating between the tomographic data and the welllogs. Although such method is universal in all its components, the complexity of thegeophysical surveying and interpretation makes several of its aspects site-speci�c.This study employed several relationships between induction resistivity, lithofa-cies, shaliness and tomographic resistivity. The relationships re
ect, to a large degree,properties that are well understood and quite general in terms of trends. However,these relationships may not be transported to other sites; in this sense, the methodused in the study does not replace nor alleviate the tedious task of data exploration.It is helpful at the data exploration stage to identify \common-factors": the attributesor parameters that can be used for projecting areally the well log data and act assurrogates for hydrogeological and geophysical properties. At the LLNL site, that keyelement is the shaliness, due to its well-de�ned spatial structure and its sensitivity toresistivity. Once the \common factors" are identi�ed, the Bayesian model becomesthe key for data assimilation at this stage.



95The Bayesian approach used in the study clearly can be changed and improved.The pdfs in this application follow Gaussian models. One may argue that pdfs shouldbe accurate re
ections of data and not models or conjectures. This issue is particu-larly signi�cant for the tails of the pdfs. However, modeling decision here does notimpinge on the fundamentals of the approach, which by no means require Gaussianpdfs [Woodbury and Ulrych, 1993]. Another issue concerns the development of thepetrophysical models. The search leading to Figure 3.6a was based on visual inspec-tion. Nevertheless, there is clearly a need to implement a more systematic approach,especially given that the relationship can be more complex in terms of the number ofclusters and the number of the parameters involved.Under the conditions explored here, a signi�cant reduction of the estimation accu-racy was observed in the presence of realistic error levels in the geophysical surveys.The bene�ts in estimating high-resolution subsurface resistivity are more signi�cantthan those gained in estimating lithofacies given a low-resolution resistivity survey.The LLNL data showed good correlation between resistivity and lithofacies at thesmall scale, but the correlation deteriorates at lower resolution. This observation issupported by the fact that the resistivity surveys were non-informative for updat-ing the lithofacies images. Resistivity-shaliness-lithofacies relations may show perfectcorrelation at a �ne scale but can appear to have large scatter when using a largerobservation scale.
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Chapter 4

Estimating Lithofacies from Borehole andCrosshole Geophysical Data Using theBayesian Model Coupled with a FuzzyNeural Network
4.1 IntroductionHeterogeneity of lithofacies has an important e�ect on the determination of hydro-geological and geochemical parameters in 
ow and contaminant transport. Modelingof this heterogeneity requires the joint use of di�erent sources of information, espe-cially less-invasive and cost-e�ective geophysical data.Borehole geophysical data have been used for decades to map spatial variabilityof lithofacies [Doveton, 1986]. The main focus of the mapping is on the inference ofthe cross correlation between the lithofacies and the multiple geophysical attributes.Many methods have been developed for the purpose, such as graphical models [Dove-ton, 1986], multivariate analysis [Del�ner et al., 1987], neural networks [Rogers et



97al., 1992], and fuzzy neural networks [Chang et al., 1997]. Among those methods,fuzzy neural networks have been shown most attractive because they take advantagesof neural networks in �tting nonlinear functions and fuzzy logic in including humanknowledge into the �tting. The methods, however, are ignorant of spatial correlationof lithofacies, which has been shown very useful in many situations [Deutsch andJournel, 1998].Surface and crosshole geophysical data have also been used to improve lithofaciesestimation, such as surface or crosshole seismic data [Lortzer and Berkhout, 1992;Copty and Rubin, 1995; Hyndman and Gorelick, 1996], surface gravity and magneticdata [Bosch, 1999; Bosch et al., 2001], and surface electrical resistivity data [Salem,2001]. To jointly use geophysical data collected from surface or crosshole surveys andfrom borehole logging, several problems exist: (1) the scale disparity between surfaceor crosshole surveys and borehole logging [Ezzedine et al., 1999], (2) spatial correlationof lithofacies, and (3) cross correlation between lithofacies and geophysical attributes.A simple yet practical method to solve the problems is geostatistical indicator cok-riging [Rosenbaum et al., 1997; Deutsch and Journel, 1998]. This method, however,is limited as the cross correlation between lithofacies and geophysical attributes ishighly nonlinear.Bayesian methods have been used for many years to incorporate geophysical datainto lithofacies estimation [Copty and Rubin, 1995]. The methods provide a generalframework for data assimilation and allow various types of information to be inte-



98grated in a hierarchical manner [Box and Tiao, 1973; Bernardo et al., 1994]. Usinga carefully built Bayesian model, surface or crosshole geophysical data as well asborehole lithofacies and geophysical logs can be jointly used to estimate lithofacies,provided that the relations between the various types of information are available.The parameters in the Bayesian models can be identi�ed using the maximum ofa-posteriori probability density function (MAP) under some conditions [Lortzer andBerkhout, 1992], but sampling-based methods, such as the Markov Chain Monto Carlo(MCMC) method, are needed for more general situations [Gilks et al., 1998; Bosch,1999; Bosch et al., 2001]. A key focus of the Bayesian model is on the inference of thecross correlation between lithofacies and geophysical attributes. Since the relation isoften nonlinear, site-speci�c, and di�cult to obtain, a data-driven model is developedin this study to infer the cross correlation directly from training data sets, withoutmaking any assumption about the form of the function.This chapter develops a Bayesian model coupled with a fuzzy neural network(BFNN) for lithofacies estimation, using spatial correlation of the lithofacies as well asthe nonlinear cross correlation between the lithofacies and the geophysical attributes.Section 4.2 describes the Bayesian model, and section 4.3 and 4.4 present two casestudies using the model. Discussion is given in sections 4.5.



994.2 Bayesian Model Coupled with a Fuzzy NeuralNetworkThis section describes the Bayesian model coupled with a fuzzy neural networkfor lithofacies estimation. A general Bayesian framework for combining borehole andcrosshole geophysical data is given �rst, and then indicator kriging for estimating theprior and the fuzzy neural network for inferring the likelihood function are introduced.The focus is on the inference of the likelihood function using the fuzzy neural network.4.2.1 Bayesian FrameworkThe developed Bayesian model is based on a typical situation of subsurface char-acterization, such as at the Lawrence Livemore National Laboratory (LLNL) site[Ezzedine et al., 1999] and at the Oyster site [Chen et al., 2001]. Suppose lithofaciesat any location x needs to be estimated, given lithofacies measurements at location xi,i 2 A = f1; 2; � � � ; ng, and collocated geophysical data g1(x); g2(x); � � � ; gt(x), where tis the total number of geophysical attributes. The geophysical data can be obtainedfrom crosshole tomography surveys or estimated from intensive borehole geophysicalmeasurements using kriging. Let Z(x) be a discrete random variable taking num-ber 1; 2; � � �, or, q, where q is the total number of possible lithofacies at a site. Letz(xi) be the lithofacies measurement, a number between 1 and q, at location xi,i 2 A. The conditional probability of the kth lithofacies occurring at location x can



100be determined by the following Bayesian formula [Bernardo and Smith, 1994],P (Z(x) = kjg1(x); g2(x); � � � ; gt(x); z(xi); i 2 A) =Cf(g1(x); g2(x); � � � ; gt(x)jZ(x) = k; z(xi); i 2 A) � (4.1)P (Z(x) = kjz(xi); i 2 A);where C is a normalizing constant and f is a joint conditional density function,referred to as a likelihood function. The most likely estimate of lithofacies at locationx is the one that maximizes the conditional probability.The previous Bayesian model can be simpli�ed under certain conditions. Considerthe Markov assumption that cross correlation between lithofacies and geophysical at-tributes at location x does not depend on lithofacies measurements at other locations,z(xi), i 2 A, can be dropped from the likelihood function. Consequently, the Bayesianformula becomesPpost(Z(x) = k) = [Cf(g1(x); g2(x); � � � ; gt(x)jZ(x) = k)] � Pprior(Z(x) = k); (4.2)where Ppost(Z(x) = k) = P (Z(x) = kjg1(x); g2(x); � � � ; gt(x); z(xi); i 2 A) referred toas posterior probability, and Pprior(Z(x) = k) = P (Z(x) = kjz(xi); i 2 A) referred toas prior probability.4.2.2 Prior EstimateThe prior probability is estimated only from lithofacies measurements z(xi); i 2 A,using indicator kriging [Rosenbaum et al., 1997; Deutsch and Journel, 1998]. Let Ik(x)



101be an indicator random variable de�ned byIk(x) = 8>>><>>>: 1 if Z(x) = k0 otherwise ; (4.3)and therefore fZ(x) = kg is equivalent to fIk(x) = 1g. Let pk be the unconditionalprobability of the kth lithofacies occurring at location x. The conditional probabilityis thus given by Pprior(Z(x) = k) = pk +Xi2A�i(x)(Ik(xi)� pk) (4.4)and Xi2A�i(x)CI(xi;xj) = CI(x;xj); j 2 A;where CI(xi;xj) is the covariance of the indicator variables at location xi and xj, and�i(x), i 2 A, are the unknown parameters.The indicator kriging takes advantages of spatial correlation of lithofacies. Asthe distances between location x and xi; i 2 A, become large, however, the condi-tional probability will be close to the unconditional probability pk, and lithofaciesmeasurements at boreholes will not in
uence lithofacies estimation at location x.4.2.3 Likelihood FunctionThe likelihood function in Equation 4.2 is a connection between lithofacies andgeophysical attributes, and it can be inferred from both lithofacies and geophysical



102data. The inference, however, is very challenging because cross correlation betweenthe lithofacies and geophysical attributes is often nonlinear and site-speci�c. Manyprevious applications of Bayesian methods follow a forward approach [Kitanidis, 1986;Copty and Rubin, 1995]. They �rst assumed the form of the likelihood function andthen estimated the parameters associated with the form. This approach is straight-forward yet e�cient in certain circumstances, but giving the form of the likelihoodfunction is very di�cult, especially as data quality is low and the cross correlation iscomplicated. This study follows another line and uses a fuzzy neural network as acomputing model to learn the likelihood function directly from a training data set.The paradigm of the computing model is shown in Figure 4.1, where h(x; �)is the function determined by the neural network structure and � is a parametervector associated with the structure. Let (g1(xi); g2(xi), � � � ; gt(xi), Cf(g1(xi); g2(xi),� � � ; gt(xi) j Z(xi) = k)), i 2 A, be a training data set. Parameter vector � can beestimated by minimizing the following objective function:Xi2A [h(xi; �)� log(Cf(g1(xi); g2(xi); � � � ; gt(xi)jZ(xi) = k))]2: (4.5)Fitting log(Cf) instead of Cf is because the log value of Cf has a smaller range thatleads to a more e�cient computation.



103
Fuzzy Neural Network- -g1(x); g2(x); � � � ; gt(x)) h(x; �)

Figure 4.1: Computing model of the likelihood function4.2.4 Structure of the Fuzzy Neural NetworkThe fuzzy neural network used in the study is similar to the one given by Takagiand Sugeno [1985] and Jang [1993], which consists of several fuzzy inference rules.To simplify illustration of the system, only two types of geophysical attributes areconsidered; the model, however, can be directly applied to a more general case. Letg1(x) and g2(x) be geophysical data at location x. An example of the system withtwo fuzzy rules is given byRule-1: If g1(x) is A1 and g2(x) is B1, then the output of the fuzzy rule is o1,Rule-2: If g1(x) is A2 and g2(x) is B2, then the output of the fuzzy rule is o2.Ai and Bi (i = 1; 2) in the premises of those rules are linguistic labels, such as smalland large, or fuzzy sets. A fuzzy set is a class of objects with a continuum of gradesof membership; such a set is characterized by a membership function that assignsto each object a grade of membership ranging between zero and one [Zadeh. 1965].Fuzzy sets and their linguistic labels are often used interchangeably in literatures, and



104this allows interpreting fuzzy inference rules intuitively. o1 and o2 in the consequencesof the rules are constants in the study, but they can be linear functions of input g1(x)and g2(x), as given by Takagi and Sugeno [1985].Figure 4.2 shows the fuzzy reasoning of the fuzzy neural network. For givengeophysical data g1(x) and g2(x) at location x, the grades of membership of g1(x) infuzzy sets A1 and A2, i.e. �A1 [g1(x)] and �A2[g1(x)], and the grades of membershipof g2(x) in fuzzy sets B1 and B2, i.e. �B1 [g2(x)] and �B2[g2(x)] are calculated. Usingthese membership values, the weights of rule-1 and rule-2 for the inference can bedetermined by followingwi(x) = �Ai[g1(x)] � �Bi[g2(x)]; i = 1; 2: (4.6)Other methods can also be used to compute the weights, such as minimum or maxi-mum, but the current method is most computationally e�cient [Takagi and Sugeno,1985]. The �nal result of this inference is a weighted linear combination of the outputsof all the fuzzy rules as given byh(x; �) = w1(x)o1 + w2(x)o2w1(x) + w2(x) ; (4.7)where � is a parameter vector and h(x; �) is a function of both location x and pa-rameter �.Figure 4.3 shows the structure of the fuzzy neural network as given by [Jang, 1993].The input to each node in layer 1 is g1(x) or g2(x); the output is the corresponding
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Figure 4.2: Fuzzy reasoning of the fuzzy neural networkgrade of membership �Ai[g1(x)] or �Bi[g2(x)] as given by�Ai[g1(x)] = exp0@� g1(x)� ci1�i1 !21A ; (4.8)�Bi[g2(x)] = exp0@� g2(x)� ci2�i2 !21A ;where i = 1; 2, ci1 and ci2 are the centers of fuzzy sets Ai and Bi, and �i1 and �i2 aretheir corresponding bases. The outputs of the node in layer 2 and 3 are the weightswi(x), i = 1; 2, and their relative weights �wi(x) = wi(x)=(w1(x) + w2(x)), i = 1; 2,respectively. The input to each node in layer 4 is the relative weight �wi(x) and theconsequences oi, i = 1; 2; the output is the product of its corresponding input. Thenode in the last hidden layer is the summation of all incoming signals to the node as
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Figure 4.3: Structure of the fuzzy neural networkgiven by h(x; �) = �w1(x)o1 + �w2(x)o2; (4.9)which is equivalent to Equation 4.7.This system seems very simple and arbitrary, but it has been demonstrated tobe very e�cient in �tting multivariate nonlinear functions by Takagi and Sugeno[1985], Horikawa et al [1991], and Jang [1993]. Actually, this system can be usedto approximate any continuous nonlinear function de�ned on a bounded domain asshown by Jang [1993] and Rojas [1996].



1074.2.5 Learning Algorithm of the Fuzzy Neural NetworkThe learning of the fuzzy neural network includes the determination of the numberof fuzzy inference rules and the identi�cation of the parameters associated with therules from a given training data set.Structure Identi�cationStructure identi�cation is performed using fuzzy c-mean (FCM) cluster analysis.The number of fuzzy rules and the initial values of the centers and bases of eachfuzzy set in the premises of those rules are determined by identifying possible patternsinherent in the input data.The algorithm used in the study was given by Bezdek [1981], which is a verye�cient iterative procedure. Let (g1(xj); g2(xj)), j 2 A, be input data, which can bedivided into m fuzzy clusters. Let ci = (ci1; ci2)T , i = 1; 2; � � � ; m, be the centers ofthe fuzzy sets, yj = (g1(xj); g2(xj))T be the jth input data, and uij be the grade ofmembership of yj in the ith fuzzy cluster. The algorithm becomes:1. Randomly assign the initial grades of membership uij 2 [0; 1] and Pmi=1 uij = 1.2. Compute the center of each fuzzy cluster usingci = Pj2A u2ijyjPj2A u2ij ; i = 1; 2; � � � ; m: (4.10)3. Update the grades of membership using the newly obtained centers ci, i =1; 2; � � � ; m. Let dij =k ci � yj k and dkj =k ck � yj k. If dij = 0, uij = 1 and



108ukj = 0 for k 6= i; otherwise, uij = 1=d2ijPmk=1 1=d2kj : (4.11)4. Compare the newly updated grades of membership with the old ones. If theyare close to each other, stop the iteration; otherwise, go back to step 2.The number of fuzzy rules is determined by considering both compactness andseparation of fuzzy clusters [Xie and Beni, 1991]. The compactness of the clusters isde�ned as the weighted squared distance as given byJ(c1; c2; � � � ; cm) = mXi=1 Xj2Au2ij k ci � yj k2: (4.12)The separation of the clusters is de�ned as the minimum distance between the centersof each pair of the clusters as followsdmin = mini6=j k ci � cj k; i; j = 1; 2; � � � ; m. (4.13)Both the compactness and the separation decrease with the increasing of the numberof clusters. For a good cluster analysis, data points within clusters are expected tobe compact (small compactness), whereas the cluster centers are expected to be wellseparate (large separation). Consequently, the number of clusters can be determinedby minimizing the following function:S = J(c1; c2; � � � ; cm)=nd2min ; (4.14)where n is the total number of pairs in the input data.



109Parameter Identi�cationParameter identi�cation plays an important role in the learning of the fuzzy neuralnetwork. The consequence of each rule and the centers and bases of the fuzzy sets inthe premises of the rules, speci�cally oi, ci1, ci2, �i1 and �i2 for i = 1; 2, are estimatedfrom a giving training data set.The training data set used in the study originally is in the form of (g1(xi); g2(xi),z(xi)), i 2 A, where g1(xi), g2(xi) and z(xi) are geophysical data and lithofacies atlocation xi and A is an index set as given early in the chapter. Since the fuzzy neuralnetwork is used to approximate log likelihood rather than lithofacies in this study,transformation from lithofacies measurement z(xi) into the corresponding log likeli-hood is needed. Let l(xi) = log[Cf(g1(xi); g2(xi)jZ(xi) = k)]. Using Equation 4.2,the log likelihood is given byl(xi) = log[Ppost(Z(xi) = k)]� log[Pprior(Z(xi) = k)]: (4.15)The prior probability Pprior(Z(xi) = k) is estimated from lithofacies measurementsat other wells. To avoid the prior probability being zero, let Pprior(Z(xi) = k) = �,where � is a small value between 0:01 and 0:05, if Pprior(Z(xi) = k) < �. Likewise,assign Ppost(Z(xi) = k) = 1� � if z(xi) = k, and Ppost(Z(xi) = k) = � otherwise. Thevalue of � seems to be arbitrary, but the estimating results are not sensitive to thechoice of �.Several methods have been used to identify those parameters in the fuzzy neural



110network. Horikawa et al. [1991] considered the system as a general neural networkand used the back-propagation method. In light of the fact h(x; �) in Equation 4.7 isa linear function of o1 and o2 if other parameters are �xed, Takagi and Sugeno [1985],Jang [1991] and Nikraviesh [1998] employed hybrid learning methods. They used theleast squares method to estimate o1 and o2 and other nonlinear optimization methodsto estimate ci1; ci2; �i1 and �i2 for i = 1; 2.The learning algorithm is an iterative process as shown in Figure 4.4. Let o =(o1; o2)T , � = (c11; c12; c21; c22; �11; �12; �21; �22)T , and RSS be the residual sum ofsquares as given below:RSS(o;�) =Xi2A [h(xi; o;�)� l(xi)]2: (4.16)Firstly, parameter o(1), where the superscript denotes the number of iteration, is es-timated using the least squares method, given the initial value �(0) obtained fromprevious structure identi�cation. Secondly, parameter �(1) is estimated using a non-linear optimization method, given the newly updated o(1). Finally, the most recentlyobtained residual sum of squares (RSS) is compared to the previous one. If they arevery close, the iteration is terminated; otherwise, it is not, as shown in Figure 4.4.The least squares method used in the hybrid learning is straightforward. Givenparameter �, relative weights �w1(xi) and �w2(xi) for each input (g1(xi); g2(xi)), i 2 A,
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Figure 4.4: Learning procedure of the fuzzy neural network



112can be calculated to get a matrix w as follows,266666666666664
�w1(x1) �w2(x1)�w1(x2) �w2(x2)... ...�w1(xn) �w2(xn)

377777777777775 : (4.17)
Let l = (l(x1); l(x2); � � � ; l(xn))T . The relation between the consequence of each fuzzyrule and the output of the system is given by wo = l, and the least squares estimateof parameter o is given by (wTw)�1wT l [Stone, 1995].The Levenberg-Marquardt algorithm as a nonlinear optimization method is usedto estimate parameter � in the study for a given parameter o. It is a revised Gaussian-Newton method and requires iteratively evaluating residuals e = (e1; e2; � � � ; en)T ,where ei = h(xi; o;�) � l(xi), i 2 A, and Jacobian matrix J given by [McKeown,1980] 266666666666664

@e1@c11 @e1@c12 @e1@c21 @e1@c22 @e1@�11 @e1@�12 @e1@�21 @e1@�22@e2@c11 @e2@c12 @e2@c21 @e2@c22 @e2@�11 @e2@�12 @e2@�21 @e2@�22... ... ... ... ... ... ... ...@en@c11 @en@c12 @en@c21 @en@c22 @en@�11 @en@�12 @en@�21 @en@�22
377777777777775 ;where @ei@cks = 2 �wk(xi)[ok � h(xi; o;�)] � [gs(xi)� cks]�2ks ; k; s = 1; 2,@ei@�ks = 2 �wk(xi)[ok � h(xi; o;�)] � [gs(xi)� cks]2�3ks ; k; s = 1; 2,



113which are obtained using the chain rule of di�erentiation and the membership func-tions given in Equation 4.8. The detailed algorithm is given below1. Compute residual e and Jacobian matrix J for given parameters �(0) and setk = 0.2. Check gradient JTe. If jJTej < �, stop; otherwise, go to next step.3. For a given positive value �, compute �(k) = �(k�1) � (JTJ + �I)�1JTe andcheck whether RSS(o(k);�(k)) < RSS(o(k);�(k�1)). If it does, go to next stop;otherwise increase � value and repeat step 3 until RSS is reduced.4. Check j�(k) � �(k�1)j < �. If it does, stop; otherwise, set k=k+1 and repeatstep 1.
4.3 Case Study 1This case study demonstrates the ability of the Bayesian model coupled with afuzzy neural network to combine borehole and crosshole data for lithofacies estima-tion, using a synthetic data set generated from �eld measurements at the LawrenceLivemore National Laboratory (LLNL) site.



114Table 4.1: Spatial structures of lithofacies and geophysical dataLithofacies Gamma-ray ResistivitySand Silt (Shaliness) (
m)Proportion 0.52 0.48 N/A N/AHorizontal Range(m) 30.0 30.0 25.0 +1Vertical Range(m) 1.50 1.50 2.50 +1Nugget 0.0 0.0 0.011 �2RSill 0.25 0.25 0.040 �2RModels Exponential Exponential Gaussian N/A4.3.1 Synthetic DataThis study focuses on a small portion of the LLNL site shown in Figure 4.5. Amongmany geophysical logs collected at the site, gamma-ray and electrical resistivity logshave been found to be most informative for lithofacies identi�cation. Table 4.1 sum-marizes the spatial structures of lithofacies, gamma-ray and resistivity, inferred fromborehole measurements within hydrostratigraphic unit 2 (HSU2). The gamma-raywas converted into shaliness to remove inconsistencies associated with data acqui-sition [Doveton, 1986] using the method described by Ezzedine et al. [1999]. Bothlithofacies and gamma-ray shaliness have large spatial correlations compared to re-sistivity, which is spatially uncorrelated along both vertical and horizontal directions.
Synthetic data are generated along the pro�le from w1205 to w1251, shown asa solid line in Figure 4.5, using the parameters listed in Table 4.1. Firstly, a two-dimensional lithofacies �eld is generated, which are conditioned to lithofacies measure-
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Figure 4.5: Schematic map of the LLNL site. The circles denote wellbores, and thesolid lines denote the pro�le along which the synthetic data are generated.ments at the wellbores, using the sequential indicator simulation method. Secondly,a two-dimensional gamma-ray shaliness �eld is generated, which are conditioned tothe previously generated collocated lithofacies as well as gamma-ray shaliness at thewellbores, using the sequential Gaussian simulation method [Deutsch and Journel,1998]. Finally, a two-dimensional resistivity �eld along the same pro�le is generated,which are only conditioned to collocated lithofacies and gamma-ray shaliness, notresistivity at the wellbores.The previously generated data are divided into two parts, one for training andthe other for testing. The training set is constructed by randomly selecting eightwellbores along the lateral direction as shown in Figure 4.6, which mimic boreholes
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Figure 4.6: (a) Lithofacies �eld with silt (black) and sand (white); (b) Gamma-rayshaliness �eld with values between 0 (black) and 1 (white); (c) Electrical resistivity�eld with values between 5
m (black) and 30
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117in real situations, and the testing set consists of the remaining of the synthetic data.Figure 4.7 compares the normalized indicator experimental variograms, shown as thedashed lines with circles and inferred from the data at the eight wellbores, with theircorresponding theoretical ones, shown as the solid lines and used for generating thesynthetic lithofacies �eld. The consistency between the experimental and theoreticalvariograms con�rms that the generated lithofacies �eld is a realization of the random�eld with the spatial structure given in Table 4.1. Figure 4.8 shows the scatter-plot ofgamma-ray shaliness versus resistivity using the data at the eight wellbores. It is clearthat the cross correlation between gamma-ray shaliness and resistivity is nonlinear,non-unique and of a considerable uncertainty.4.3.2 ApproachThe advantages of using the BFNN model for lithofacies estimation are demon-strated by comparing it with several other models commonly used in site character-ization. Each model is �rst trained using the data at the eight wellbores and thenthe trained model is used to estimate lithofacies at any location in crosshole areas.The estimated results are compared with their corresponding true values and thetotal number of misclassi�cation is counted in terms of the minimum distances be-tween the testing locations and the locations whose measurements have been usedfor estimating the current lithofacies. From the relations between the percentagesof misclassi�cation and the minimum distances, the e�ciency of each model and the
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Figure 4.7: Variograms (a) along the horizontal direction and (b) along the verticaldirection. The dashed lines with circles are the experimental variograms based onthe data at the eight wellbores, and the solid curves are the theoretical ones used forgenerating the synthetic data.
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120e�ects of the spatial correlation can be evaluated.The models used for comparison include indicator kriging, indicator cokriging, andthe fuzzy neural network without considering spatial correlation of lithofacies, whichis referred to as FNN later in the chapter. The indicator kriging has been describedin section 4.2.2, and the fuzzy neural network without considering spatial correlationis similar to the one given in the previous section, except that the output of the fuzzyneural network is the conditional probability rather than the log likelihood.The indicator cokriging is similar to the one given by Almeida and Journel [1994],where only collocated geophysical data are used. Prior to using the model, resistivitydata need to be normalized to a range between 0 and 1 by �rst subtracting their min-imum value and then dividing by their range. Let g1(x) be the gamma-ray shalinessand g2(x) be the normalized resistivity at location x. The conditional probability ofthe kth lithofacies occurring at location x is given byP (Z(x) = kjg1(x); g2(x)) = pk +Xi2A�i(x)(Ik(xi)� pk)++s1(x)(g1(x)�m1) + s2(x)(g2(x)�m2); (4.18)andXi2A�i(x)�I(xi;xj) + s1(x)�Ig1(x;xj) + s2(x)�Ig2(x;xj) = �I(x;xj); j 2 A;Xi2A�i(x)�Ig1(x;xi) + s1(x)�g1 + s2(x)�g1g2 = �Ig1;Xi2A�i(x)�Ig2(x;xi) + s1(x)�g1g2 + s2(x)�g2 = �Ig2;



121where m1 and m2 are the means of the gamma-ray shaliness and the normalizedresistivity. �I , �g1 and �g2 in the equations are the correlation coe�cients of theindicator variable, the gamma-ray shaliness and the resistivity, respectively; �Ig1,�Ig2, �g1g2 are the cross correlation coe�cients between the indicator variable and thegeophysical data, g1(x) and g2(x).4.3.3 ResultsFigure 4.9 shows the percentage changes of misclassi�cation with the increasing ofthe minimum distances between the testing and the measurement locations. In termsof the changes, the BFNN model has several advantages over other models. For theFNN model, the percentages of misclassi�cation does not depend on the minimumdistances, and lithofacies at any location is estimated only from the correspondingcollocated geophysical data. Although the method is as e�cient as the BFNN modelwhen the testing locations are far away from the measurement locations, it is limitedwhen the testing locations are close to the measurement locations. In the case, theBFNN model takes advantages of using spatial correlation of lithofacies and reducesthe percentages of misclassi�cation signi�cantly.For the indicator kriging, the percentages of misclassi�cation increase with theincreasing of the minimum distances as shown in Figure 4.9. As the distances becomelarge, the lithofacies measurements collected from the wellbores have a weak in
uenceon lithofacies estimation. As a result, the percentages of misclassi�cation tend to a



122constant value determined by the unconditional probability of each lithofacies. TheBFNN model in the case adds geophysical information to the estimation that leadsto a considerable reduction in percentages of misclassi�cation.The indicator cokriging seems to have a similar performance to the BFNN modelin terms of the percentages of misclassi�cation, as shown in Figure 4.9, but this is not ageneral case. The indicator cokriging, as given in Equation 4.18, is a linear predictionmethod that relies on correlation and cross correlation coe�cients. In this case study,there are only two lithofacies, and the nonlinearity of the cross correlation between thegeophysical attributes and lithofacies is not very high. The advantages of using theBFNN model are therefore not obvious compared to the indicator cokriging. Whenthe nonlinearity of the cross correlation increases, however, the indicator cokrigingwill not be as e�cient as the BFNN model, which will be shown in the next casestudy.
4.4 Case Study 2The second case study demonstrates the e�ect of the nonlinear cross correlationbetween lithofacies and geophysical attributes on the performances of the BFNNmodel and the indicator cokriging using synthetic data sets. Since the nonlinearity ofthe cross correlation usually increases with the increasing of the number of lithofacies,the BFNN model will be compared with the indicator cokriging using the synthetic
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Figure 4.9: Comparison of misclassi�cation using the synthetic data set, where I =10m is the integral length of sand.



124data with two, three, or four lithofacies.4.4.1 Synthetic DataSynthetic data for the case study include three lithofacies �elds, shown in Fig-ure 4.10, and geophysical data along several wellbores, shown as solid lines in thesame �gure. Each �eld is generated using the indicator sequential simulation method[Deutsch and Journel, 1998] and has a size of 120 m�40 m. The theoretical indicatorvariograms of di�erent lithofacies used for generating the random �elds are the same,which is the exponential model with an integral length of 10 m along the lateraldirection and 1 m along the vertical direction.The hypothetical wellbores were obtained by evenly sampling the previously gen-erated lithofacies �elds at 20 m intervals. Along each of the wellbores, electricalresistivity and seismic velocity are randomly generated using the Gaussian randomgenerator. The means and standard deviations of the random generators are deter-mined according to the collocated lithofacies and the data given in Table 4.2. Themean values of resistivity in the table were obtained from resistivity logs collected fromw1250 at the LLNL site, and the mean values of seismic velocity were chosen based onpublished parameter ranges for unconsolidated saturated sediments [Lankston, 1990;Hyndman et al., 1994]. The complexity of the cross correlation can be changed byadjusting the standard deviations of those data. Figure 4.11 shows the cross plotsof the synthetic data at the �ve wellbores generated using the parameters given in
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Figure 4.10: Lithofacies �elds (a) with silt and silty-sand, (b) with silt, silty-sand andsand, and (c) with silt, silty-sand, sand and gravel.



126Table 4.2: Means and standard deviations of geophysical data for each lithofaciesLithology Resistivity (
m) Seismic Velocity (m/s)mean Standard Deviation mean Standard DeviationSilt 10.43 1.23 1520 130.0Silty-Sand 12.89 2.10 1780 105.0Sand 18.81 2.90 1830 105.0Gravel 25.65 1.42 1620 105.0Table 4.2. It is clear that the nonlinearity of the cross correlation increases as thenumber of lithofacies increases.4.4.2 ApproachThe approach used in the case study is similar to the one used by Chen et al.[2001]. Each of the �ve wellbores is in turn to be considered as a testing well and thecorresponding other four wellbores are taken as a training set. The data at the trainingset are �rst used to train the BFNN model and the indicator cokriging, and then thetrained models are used to estimate lithofacies at each testing location. The estimatedvalues are �nally compared with the corresponding true values. The performance ofeach model is evaluated by analyzing the percentages of misclassi�cation, similar tothe previous case study.
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Figure 4.11: Cross-plots of resistivity versus seismic velocity (a) with two lithofacies,(b) with three lithofacies, and (c) with four lithofacies.



1284.4.3 ResultsTable 4.3 is a summary of percentages of misclassi�cation for each data set shownin Figure 4.11. Although the number of testing wells is only �ve, the e�ects ofnonlinearity on the reduction in percentages of misclassi�cation are observed fromTable 4.3. For the lithofacies �eld with two lithofacies, the nonlinearity of the crosscorrelation is not high, and the di�erence in percentages of misclassi�cation betweenthe BFNN model and the indicator cokriging is not signi�cant. That is consistent withthe previous case study. However, as the number of lithofacies or the nonlinearityof the cross correlation increases, the di�erences between the two models becomeevident. Similar results can also be obtained if the interval between the sampledwellbores are reduced.
4.5 DiscussionA Bayesian model coupled with a fuzzy neural network (BFNN) was developed toestimate lithofacies in this chapter using lithofacies core measurements and geophysi-cal data. The prior probability is estimated from lithofacies measurements only usingindicator kriging based on spatial correlation of the lithofacies, whereas the posteriorprobability is updated from the prior using geophysical data through the likelihoodfunction. The e�ciency of the model in combining the lithofacies measurements andthe geophysical data was demonstrated using two synthetic data sets.



129
Table 4.3: Percentages of misclassi�cationTesting Well Kriging (%) Cokriging (%) BFNN (%)Pattern-1 Well-1 54 5 7Well-2 39 7 5Well-3 39 5 2Well-4 36 2 0Well-5 46 12 5Average 43 6 4Standard Deviation 7 6 4Pattern-2 Well-1 63 20 24Well-2 56 22 7Well-3 39 12 10Well-4 46 10 7Well-5 49 29 15Average 51 19 13Standard Deviation 9 8 7Pattern-3 Well-1 76 37 24Well-2 66 39 10Well-3 68 24 22Well-4 71 34 24Well-5 71 41 17Average 70 35 20Standard Deviation 4 7 6



130The BFNN is the most e�ective method among indicator kriging, indicator cok-riging and fuzzy neural networks without using spatial correlation (FNN). Each ofthe alternatives can be considered as a special case of the BFNN in di�erent situa-tions. The BFNN is similar to the indicator kriging when estimating locations areclose to boreholes, similar to the FNN when estimating locations are far away fromthe boreholes, and similar to the indicator cokriging when the number of lithofaciesis less than three or the nonlinearity of cross correlation is not high. The BFNNis particularly useful for cases where the nonlinearity of cross correlation betweenlithofacies and geophysical attributes is very high and estimating locations are withintwo or three integral lengths of lithofacies. That is a typical situation in subsurfacecharacterization for the purpose of environmental remediation, such as at the bacte-rial transport site in Oyster (VA) and at the geochemical transport site in Livermore(CA).The primary focus of the study is on the inference of the likelihood function usinga fuzzy neural network from cross correlation between lithofacies and geophysical at-tributes. This relation is usually very complex and site-speci�c due to the di�erencein measurement scales of lithofacies and geophysical data and due to uncertainty as-sociated with acquisition and interpretation of the geophysical data. Making a-prioriassumptions about the relation is very di�cult, especially when the numbers of litho-facies and geophysical attributes are more than two. The fuzzy neural network asan e�cient �tting model, however, allows inferring the likelihood function directly



131from training data sets without making any assumption about the form of the non-linear function. The scale di�erence between lithofacies and geophysical data anduncertainty related to data collection are implicitly considered in this model.Although the method is oriented toward the LLNL project where there are twodi�erent geophysical attributes that have been shown most informative to lithofaciesestimation, it can be directly used to cases where there are more than two types ofgeophysical data, such as in Doveton [1986] and Rogers et al. [1992]. The BFNNmethod is also very e�cient in handling multi-dimensional data sets because crosscorrelation is extracted using a fuzzy neural networks, which allows multiple data asinput [Takagi and Sugeno, 1985]. With the use of the fuzzy neural network, complexpatterns inherent in the multi-dimensional data sets can be extracted, which are verydi�cult otherwise.The limitation of the BFNN results from the assumptions that collocated geo-physical data are available at any estimating location and geophysical data satisfythe Markov condition. This is applicable when lithofacies along geophysical tomo-graphic pro�les need to be estimated or when there are many borehole measurementsand crosshole geophysical data so that geophysical data can be interpolated to anyestimating location. To estimate lithofacies in other situations, however, more sophis-ticated models may need to be developed, such as the Markov Chain Monte Carlo(MCMC) method [Gilks et al., 1998], in which the nonlinear cross correlation canbe simulated as a mixing distribution and the fuzzy neural network will be used to



132explore the structure of the mixing model.
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Chapter 5
SummaryThis dissertation is centered on the joint use of hydrogeological and geophysicaldata for subsurface characterization. Three case studies were presented, each of whichfocuses on an important aspect of the data assimilation using Bayesian methods withdi�erences in the inference of likelihood functions.The �rst case study explores the use of GPR tomographic velocity, GPR to-mographic attenuation and seismic tomographic velocity for hydraulic conductivityestimation at the South Oyster Site, using a Bayesian framework. Since site-speci�crelations between hydraulic conductivity and geophysical properties are often non-linear and subject to a large degree of uncertainty such as in this site, a normallinear regression model is developed that allows exploring these relationships system-atically. Although the log-conductivity displays a small variation and the geophysicaldata vary over only a small range, results indicate that the geophysical data improvethe estimates of the hydraulic conductivity. The improvement is the most signi�cantwhere prior information is limited. Among the geophysical data, GPR and seismicvelocity are more useful than GPR attenuation.In the second case study, a Bayesian approach for combining well logs and geophys-



134ical surveys is presented to improve subsurface characterization. The main challengeis in creating the bridge to link between ambiguously related geophysical surveys andwell logs. The second challenge is imposed by the disparity between the scales of thegeophysical surveys and the well logs. This approach intends to transform the well logdata so that they can be updated by the geophysical surveys, and this tends to be aconvoluted process. The method starts with generating lithofacies images, conditionalon well logs. Each of the images is used as the basis for generating a series of shalinessimages, again conditional on well logs data. The shaliness images are converted intoresistivity images to create an interface with the crosswell resistivity surveys using asite-speci�c petrophysical model relating between shaliness, resistivity and lithofacies.The lithofacies and resistivity images are then updated using the cross-well resistivitysurveys. The limitations of the approach were also explored using synthetic surveyswith di�erent resolutions and error levels, which closely mimic the conditions at theLLNL site. Results reveal that the proposed method enhances hydrogeological sitecharacterization even when the resistivity surveys have a relatively low resolution.In the last case study, a Bayesian model coupled with a fuzzy neural network(BFNN) is developed to alleviate the di�culty of using geophysical data in lithofa-cies estimation when cross correlation between the lithofacies and the geophysicalattributes is nonlinear. The prior estimates are inferred from borehole lithofaciesmeasurements using indicator kriging based on spatial correlation of the lithofacies,and the posterior estimates are obtained from updating of the prior using the geo-



135physical data. The novelty of the study lies in the use of a fuzzy neural network for theinference of the likelihood function. This allows incorporating the spatial correlationas well as the nonlinear cross correlation into lithofacies estimation. The e�ectivenessof the BFNN is demonstrated using synthetic data generated from measurements atLLNL site.
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Appendix A

Synthetic Electromagnetic SurveyThe theoretical foundation of the EM survey is based on Maxwell's wave propa-gation equations. These latter couple the electric �eld E to the magnetic �eld H asfollows: r�E(x; t) = � @@tB(x; t) (A:1)r�H(x; t) = @@tD(x; t) + J(x; t) (A:2)r �B(x; t) = 0; and r �D(x; t) = Q(x; t) (A:3)where D is the electric 
ux, B the magnetic 
ux, J is the current density, and Q isthe charge density [Chew , 1995]. For time varying EM �elds, Equations A.3 can bederived from the �rst two equations using the continuity equation given by:rJ = �@Q@t = � @@t (r �D) (A:4)In this static case, the electric �eld and the magnetic one are decoupled, and theelectric �eld equations can be solved independently from the magnetic ones. Thisapproximation should be viewed as an approximation, applicable in cases where thespatial variability of the conductivity is weak. This approximation has already beenused in previous studies [Beard et al.,1996].



152In the case of the HSU2 at the LLNL, the mean of the resistivity is 11
m and17
m, in silt and sand, respectively. The variance of the resistivity in silt and sandare 2 and 3:5(
m)2. These statistics show that the contrast of variability betweenand within each silt and sand bodies are similar, and assumptions similar to those ofBeard et al. [1996] can be made.De�ning the current density J as [Telford et al., 1990]:J = R�1E; E = �rV (A:5)where V is the potential, it satis�es the continuity equation (A.4), which leads tor(�rV ) = 0 (A:6)where � = 1=R is the electric conductivity.Equation (A.6) describes the response of the domain at the smallest scale overwhich � can be de�ned. In a geophysical survey, the small-scale variability cannotbe detected. Instead, large parts of the domain are homogenized, and respond as ahomogeneous block. The geophysical survey de�nes the block conductivity, �b = 1=�,for which the continuity equation becomes:r(�brVb) = 0 (A:7)where Vb describes the potential �eld in the homogenized resistivity �eld, subject tothe same boundary conditions as in (A.6).
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Appendix B

Conditional Mean SamplingFor an arbitrary covariance matrix, generating random samples from a joint nor-mal distribution with given values of some linear combinations is not di�cult, becauseall linear combinations of jointly normal random variables are jointly normal, whichmeans that the conditional distributions are also jointly normal. The procedure isto subtract the regression of the various variables on the constraints, i.e., assumingthe n random variables r1; � � � ; ri; � � � ; rn are generated from di�erent Gaussian pdff 001 (r;m001; �001), � � �, f 00n(r;m00n; �00n), respectively, all ri have to average to the resistiv-ity survey �. For an arithmetic average, the di�erence between � and the sampled�r = Pl rl=n is then subtracted from each rl as follows:r00l = rl � (�r � �) (B:1)where r00 is the posterior resistivity. For a geometric mean the procedure remainsvalid, but the resistivity should be replaced by its logarithm: ln(r).To take into account the variability for each pdf, one should weight the correctedresistivity value with respect to their relative inertia, as follows:r00l = rl � n�2l (�r � �)=Xm �2m (B:2)



154Since corrections are deterministic, statistics of each distribution remain the same.


