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Abstract

Bayesian Approaches for Subsurface Characterization Using Hydrogeological and

Geophysical Data

by

Jinsong Chen

Doctor of Philosophy in Engineering-Civil and Environmental Engineering
University of California at Berkeley

Professor Yoram Rubin, Chair

Near-surface investigations often require detailed mapping of spatial variability of
hydrogeological parameters. Conventional techniques for collecting densely sampled
hydrogeological data are costly, time-consuming, and invasive; consequently, cost-
effective and noninvasive geophysical methods can be used to provide additional in-
formation for the subsurface. This study explores the use of hydrogeological and
geophysical data for site characterization within a Bayesian framework, and three
case studies are presented with emphases on different aspects of subsurface inves-
tigations. The first study explores the use of ground penetrating radar (GPR) to-
mographic velocity, GPR tomographic attenuation, and seismic tomographic velocity

using data collected from the Oyster site (VA) for hydraulic conductivity estimation



using the Bayesian method based on a normal linear regression model. Although the
log-conductivity displays a small variation and the geophysical data vary over only a
small range, results indicate that the geophysical data improve the estimates of the
hydraulic conductivity and the improvement is the most significant where prior infor-
mation is limited. Among the geophysical data, GPR and seismic velocity are more
useful than GPR attenuation. The second study considers a scale disparity problem
in which small-scale resistivity logs and large-scale electromagnetic (EM) surveys col-
lected from the Lawrence Livermore National Laboratory site (CA) are used to map
two-dimensional resistivity fields using a Bayesian method. Results reveal that the
large-scale survey data enhance hydrogeological site characterization even when they
have a relatively low resolution. The last study focuses on the issue of petrophysical
relations between hydrogeological and geophysical data. A Bayesian model coupled
with a fuzzy neural network (BFNN) is developed to alleviate the difficulty of using
geophysical data in lithofacies estimation due to non-linearity of cross correlation be-
tween lithofacies and geophysical attributes. Results show that the BENN model is
the best method among indicator kriging, indicator cokriging, and the fuzzy neural

network without considering spatial correlation.

Professor Yoram Rubin
Dissertation Committee Chair



Contents

List of Figures iv
List of Tables viii
1 Introduction 1
1.1 Motivation . . . . . . . . .. 1
1.2 Statement of the Problem . . . . . ... ... ... .. ........ 4
1.3 Review of Previous Work . . . . . . . .. .. ... ... ... ..., 5t
1.3.1 Geophysical Characterization Methods . . . . . . .. ... .. 6
1.3.2 Data Assimilation Methods . . . . ... ... .. ....... 11
1.4 Scope of the Dissertation . . . . . . . ... .. ... ... ....... 15
2 Estimating the Hydraulic Conductivity at the South Oyster Site
from Geophysical Tomographic Data Using Bayesian Techniques
Based on a Normal Linear Regression Model 19
2.1 Introduction . . . . . . .. ... 19
2.2 Site and Data Descriptions . . . . . . .. ... .. ... . ... ... 22
2.2.1 South Oyster Site . . . . . . . ... ... ... .. 22
2.2.2 Field Sampling . . . .. ... oo 25
2.2.3 Data Analysis . . . . . ..o 30
2.3 Methodology . . . . . . . . . 35
2.3.1 Bayesian Formula . . . . . . . ... ... 00000 35
2.3.2 Normal Linear Regression Model . . . . . .. ... ... ... 39
2.4 Hydraulic Conductivity Estimation . . . . . ... .. .. ... .... 42
2.4.1 Outline of the Approach . . . . .. .. ... ... ... .... 42

2.4.2 Estimating the Hydraulic Conductivity Using GPR Velocity . 43
2.4.3 Estimating the Hydraulic Conductivity Using GPR Velocity,
GPR Attenuation, and Seismic Velocity . . . . . . .. ... .. 48

2.5 Discussion and Conclusions . . . . . . . . . . ..o 51



i

3 Bayesian Method for Hydrogeological Characterization using Bore-
hole and Geophysical Data: Theory and Application to the Lawrence

Livemore National Laboratory Site 55
3.1 Introduction . . . . . . . . .. .. 95
3.2 Site Description, Sources of Data, and Geostatistical Analysis . ... 58
3.2.1 Lawrence Livermore Superfund Site . . . . . .. ... ... .. 28
3.2.2  Lithological and Geophysical Raw Data . . . . . . ... .. .. 61
3.2.3 Geostatistical well log analysis . . . . . .. ... ... .. ... 62
3.3 Bayesian Data Assimilation . . . . . ... ... ... ... ...... 70
3.3.1 Outline of the approach . . . . ... ... ... ........ 72
3.3.2  Synthetic “True” Database . . . . . . ... ... .. ... ... 79
3.4  Electromagnetic Surveying . . . . . . ... ..o 80
3.5 Synthetic Case Study . . . . . . . . . ... Lo 83

3.5.1 Indicator Likelihood Functions and Lithofacies Image Updating 86
3.5.2  Resistivity Likelihood Functions and Resistivity Image Updating 88
3.5.3 Effectiveness of the Bayesian Updating . . . . . . ... .. .. 92
3.6 Summary . . ... e 92

4 Estimating Lithofacies from Borehole and Crosshole Geophysical
Data Using the Bayesian Model Coupled with a Fuzzy Neural Net-

work 96
4.1 Introduction . . . . . . ... 96
4.2  Bayesian Model Coupled with a Fuzzy Neural Network . . . . . . .. 99
4.2.1 Bayesian Framework . . . . . . ... ... ... 00 99
4.2.2 Prior Estimate . . . . . ... ... o o 100
4.2.3 Likelihood Function . . . . . . . ... ... ... ... 101
4.2.4  Structure of the Fuzzy Neural Network . . . . . . ... .. .. 103
4.2.5 Learning Algorithm of the Fuzzy Neural Network . . . . . .. 107
4.3 CaseStudy 1 . . . . . . . 113
4.3.1 Synthetic Data . . . . ... ... ... ... 114
4.3.2 Approach . . .. ..o 117
433 Results. . . . .. o 121
4.4 CaseStudy 2 . . . ... 122
4.4.1 Synthetic Data . . . . ... ... ... ..o L. 124

4.4.2 Approach . . . ... ... 126



1

4.4.3 Results. . . . . . 128

4.5 Discussion . . . . . . ... 128
5 Summary 133
Bibliography 136
A Synthetic Electromagnetic Survey 151

B Conditional Mean Sampling 153



List

1.1

2.1

2.2

2.3

2.4

2.5

2.6
2.7

2.8

2.9
2.10

3.1

of Figures

Comparison between resolution and volume of aquifer sampled for con-
ventional core and well tests as well as for geophysical techniques. The
vertical coordinate is the fraction of sampled aquifer volume [Rubin et
al., 1998]. . .

Location of the South Oyster Site and the Aerobic Flow Cell (Golder
Associates, 1998). . . . . ..
Aerobic Flow Cell in the Narrow Channel Focus Area (the circles de-
note flowmeter measurement wells and the solid lines denote geophys-
ical tomographic profiles). . . . . ... ... o oL
(a) Histogram of log-conductivity (hydraulic conductivity in m/h), (b)
Histogram of GPR velocity (cm/ns) (c) Histogram of GPR attenuation
(1/m) (d) Histogram of seismic velocity (km/s). . . . . . .. .. ...
(a) Covariance along vertical direction (b) Covariance along the di-
rection perpendicular to geologic strike (NCB2-NCM3) (c¢) Covariance
along the direction parallel to geologic strike (NCT3-NCT1). . . . . .
Scatter-plots of log-conductivity, GPR velocity, GPR attenuation and
seismic velocity. . . . . . ..o
Schematic map of the Bayesian method. . . . . . ... ... .. ...
Comparisons of measurements, prior and posterior means at testing
well NCS7. . . . . o
Comparisons of measurements, prior and posterior means at testing
well NCM3. . . . . .
95% confidence intervals for testing well NCM3. . . . . ... ... ..
Comparison of the standard deviations and actual errors, which are
the space averages along the wells of the absolute differences between

actual and es timated values. . . . . . . . ... ...

Site map of LLNL showing treatment facility (TF) areas and total
volatile organic compounds (VOCs) contoured without respect to depth
[Blake et al., 1995]. . . . . . . ...

iv

24

26

32

34

36
44

45

46
49

50

29



3.2

3.3

3.4

3.5

3.6

3.7
3.8
3.9

3.10

3.11

(a) Location of the wells available for the present study in TFD. Nine
wells are depicted and labeled as 1205, 1206, 1208, and 1250 through
1255. (b) Vertical cross section over all hydrostratigraphic units (HSUs)
through all wells depicted on (a). Vertical dash lines represent missing
data, and HSUs are referred by their name HSU 1 through 6. . . . . .
Vertical cross section of the present study over HSU2. Distances are
reported from well 1206 and along the cross section, and available data
along the wells are depicted using continuous vertical lines. . . . . . .
Indicator experimental and theoretical semivariograms: (a) vertical
direction and (b) horizontal direction. Both theoretical semivariograms
are found to be exponential. . . . . . ... ... oL
Shaliness experimental and theoretical semivariograms: (a) vertical
direction and (b) horizontal direction. Both theoretical semivariograms
are found to be Gaussian. . . . ... ... Lo
(a) Petrophysical relationship between shaliness and resistivity plotted

from available data at the wells crossing HSU2. (b) Generic scheme

for constructing resistivity pdfs to conditional lithofacies and shaliness.

Flow chart of the approach . . . . . . ... .. ... ... .. .....
Example of prior pdf’s f'(r) for I = 0,1 and shaliness 0.3 < s < 0.6. .
”True” geological sitting. (a) Sequential indicator simulation of litho-
facies conditional on borehole data.(b) Sequential Gaussian simulation
of shaliness conditional on borehole shaliness measurements. Darker
shades represent sand (low clay content), and brighter shades represent
silt (high clay content). (¢) True resistivity random field built by pro-
jecting the ”true” shaliness field using the petrophysical relationship
given in Figure 3.6a. . . . . . . . .. ... oo L
Upscaling small-scale block conductivities ki, [ = 1,--+,n,; m =
1,---,n, into survey scale block conductivity sp. . . . . . .. ... ..
Examples of the resistivity surveys obtained by geometric averaging
of the "true” resistivity field (Figure 3.9¢) over (a) three and (b) nine

small-scale blocks in the horizontal and vertical directions. . . . . . .

60

63

65

68

69
73
77

81



3.12

3.13

3.14

3.15

3.16

3.17

4.1
4.2
4.3
4.4
4.5

vi

(a) Single realization of the lithofacies field obtained by sequential in-
dicator simulation of lithofacies conditional to borehole core data. (b)
Single realization of the shaliness field obtained by sequential Gaussian
simulation of the shaliness conditional to borehole shaliness measure-
ments. (c¢) Single realization of the resistivity field built by projecting
the shaliness random field (Figure 3.12b) using the petrophysical rela-
tionship (Figure 3.6a). . . . . . . ... .. ... ... ... 85

Posterior lithofacies image of the "testing set” (left-hand side of Fig-
ure 3.12a, using (3.15) and 3 X 3 resistivity survey (Figure 3.11a). . . 87
Examples of the likelihood function L(r|p) inferred from 3 x 3 resistivity
survey following (3.13). . . . . . . . ... 88
Effect of the resolution of the n,n, resistivity survey on the posterior

pdf’s (prior pdf’s are also plotted). The bias in the variance and the
mean decreases with the increase of the resolution of resistivity survey
(from 12 x 12,9 x 9, 6 X 6, to 3 x 3). The black box denotes ”true”
resistivity values. Prior and posterior pdf’s for shaliness between 0.1
and 0.2 in silt (left, 7 = 1), and sand (right, / =0). . . . .. ... .. 90
Posterior resistivity images of the testing set (left side of Figure 3.12c,
using (3.13) and the resistivity surveys: (a) 3x 3 resistivity survey (Fig-
ure 3.11a) and the posterior lithofacies (Figure 3.13), and (b) 9 x 9 re-
sistivity survey (Figure 3.11c) and the posterior lithofacies (Figure 3.13). 91

Percentage of number of successes (equation (3.17)) of the Bayesian

updating approach for different survey resolutions and different errors

in the surveys. . . . . . . .. 93
Computing model of the likelihood function . . . . . .. ... .. .. 103
Fuzzy reasoning of the fuzzy neural network . . . . ... ... .. .. 105
Structure of the fuzzy neural network . . . . . .. ... ... ... .. 106
Learning procedure of the fuzzy neural network . . . .. ... . ... 111

Schematic map of the LLNL site. The circles denote wellbores, and
the solid lines denote the profile along which the synthetic data are
generated. . . . . ..o 115



4.6

4.7

4.8

4.9

4.10

4.11

(a) Lithofacies field with silt (black) and sand (white); (b) Gamma-
ray shaliness field with values between 0 (black) and 1 (white); (c)
Electrical resistivity field with values between 5Qm (black) and 30Q2m
(white). . . . . .
Variograms (a) along the horizontal direction and (b) along the verti-
cal direction. The dashed lines with circles are the experimental vari-
ograms based on the data at the eight wellbores, and the solid curves
are the theoretical ones used for generating the synthetic data. . . . .
Scatter-plot of gamma-ray shaliness versus resistivity based on the data
at the eight wellbores. The solid dots denote sand and the squares
denote silt. . . . . . . L
Comparison of misclassification using the synthetic data set, where
I =10 m is the integral length of sand. . . . . . . ... ... .. ...
Lithofacies fields (a) with silt and silty-sand, (b) with silt, silty-sand
and sand, and (c) with silt, silty-sand, sand and gravel. . . . . . . ..
Cross-plots of resistivity versus seismic velocity (a) with two lithofacies,
(b) with three lithofacies, and (¢) with four lithofacies. . . . . . . ..

vii

116

118

119

123



viil

List of Tables

2.1
2.2

4.1
4.2
4.3

Comparisons of prior and posterior standard deviations . . . . . . . . 47
Reductions of the standard deviations using various types of geophys-

icaldata . . . . . . .. 52
Spatial structures of lithofacies and geophysical data . . . . . . . .. 114

Means and standard deviations of geophysical data for each lithofacies 126

Percentages of misclassification . . . ... . ... ... ... ... .. 129



ix
Acknowledgements

I would like to thank Professor Yoram Rubin for his enthusiastic guidance as my
advisor, and it has been a great pleasure to work with him. I also want to thank
Professor Charles Stone, Professor Rodney J. Sobey, and Professor Alex Becker for
their valuable and insightful comments on my work.

[ wish to thank Susan Hubbard, John Peterson, and Ernie Majer from the Lawrence
Berkeley National Laboratory for giving me excellent data to conduct this research.
I also want to thank Souheil Ezzedine from the Lawrence Livemore National Labora-
tory for discussing his research with me when he worked here.

[ want to gratefully acknowledge the Department of Energy and the National

Science Foundation for providing financial support.



Chapter 1

Introduction

1.1 Motivation

The release and transport of contaminants from industrial, agricultural or waste
disposal activities is a major environmental concern due to the potential for contam-
ination of water supplies and sensitive areas. The remediation of the contaminants
requires identification of natural heterogeneity of the geologic formation and detailed
mapping of spatial variability of the hydraulic conductivity, for which densely sampled
direct measurements of the hydrogeological parameters are needed, especially when
the aquifers under investigation are complex. Conventional techniques for collecting
hydrogeological data rely heavily on borehole drilling that is invasive, costly, and
time-consuming. The use of the method is deemed necessary for collecting detailed
information at some representative locations but is impractical for delineating spatial
variability of the parameters. Consequently, modeling of heterogeneity of the hy-
drogeological parameters using hydrogeological measurements alone becomes difficult
and subject to a large degree of uncertainty. With poor site characterization, the re-

mediation schemes may be over-designed or even inapplicable and hence unnecessarily



increase the cost of the remediation.

Geophysical methods that are noninvasive, cost-effective, and have a broad spatial
coverage along lateral directions can provide a large amount of additional informa-
tion about the subsurface. These methods measure subsurface physical properties
or their contrasts. Relations between hydrogeological and geophysical properties can
allow those geophysical data to be used qualitatively in reconnaissance studies for
identification of aquifer boundaries and stratigraphy or to be used quantitatively
at the advanced stage of site characterization for estimation of hydrogeological pa-
rameters. Traditional methods for collecting hydrogeological data include core point
measurements and volume-averaged pumping tests. The core measurements have
high resolution and a small supporting volume whereas the pumping tests have low
resolution and a large supporting volume, as shown in Figure 1.1. Geophysical meth-
ods, however, often provide data with scales between the core measurements and the
pumping tests. As a result, geophysical data bridge the information gap between the
two traditional measurements in terms of resolution and volume of aquifer sampled.
With the use of two- and three-dimensional geophysical data, a better characteriza-
tion becomes possible, and this may lead to a significant reduction of total cost for

in-situ remediation of contaminants.
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Figure 1.1: Comparison between resolution and volume of aquifer sampled for conven-
tional core and well tests as well as for geophysical techniques. The vertical coordinate
is the fraction of sampled aquifer volume [Rubin et al., 1998|.



1.2 Statement of the Problem

Several problems exist in the use of geophysical data for estimation of hydrogeolog-
ical parameters. The first one comes from the fact that geophysical methods directly
measure geophysical properties, such as electrical resistivity and seismic velocity, in-
stead of hydrogeological parameters, such as hydraulic conductivity and porosity.
Petrophysical relations are needed to incorporate the geophysical data into estima-
tion of the hydrogeological parameters. Although most geophysical attributes have
physical connections with hydrogeological properties, for unconsolidated sediments,
the relations have not always been recognized or well-understood, even in the labo-
ratory. They are often non-unique, site-specific, and affected by many compounding
factors, which are very difficult to measure or control in field conditions. Developing
data-driven petrophysical models for relating between geophysical data and hydroge-

ological parameters is one of the goals of this dissertation.

The second problem is due to the scale disparity between hydrogeological mea-
surements and geophysical data and between different types of geophysical data. As
shown in Figure 1.1, different types of geophysical measurements often have differ-
ent resolution and supporting volumes, which are determined by the mechanics and
acquisition parameters of the geophysical techniques such as source frequency, ac-
quisition geometry, and sampling spacing. Because of ambiguity which arises from

geophysical data interpretation, however, we often need to jointly use different types



of geophysical techniques at a given site. When using the multiple geophysical data
for estimation of hydrogeological parameters, we have to take into account the scale
differences. Chapter 3 of this dissertation is an effort at solving this problem. We
combined the low-resolution electrical resistivity data obtained from crosshole elec-
tromagnetic (EM) surveys and the high-resolution electrical resistivity data obtained
from borehole logging to generate two-dimensional resistivity images that can be
used later to estimate hydrogeological parameters. The scale disparity also makes it
difficult to infer petrophysical relations between geophysical attributes and hydroge-

ological parameters from training data sets.

The third problem results from measurement errors of hydrogeological data and
uncertainty associated with acquisition and interpretation of geophysical data. De-
veloping suitable assimilation models to account for the errors and the uncertainty is
another goal of the dissertation. In addition, it has been well-recognized that hydro-
geological parameters and geophysical attributes usually have good spatial structures.
How to incorporate the spatial correlation into estimation of hydrogeological param-

eters is also an issue addressed in this dissertation.

1.3 Review of Previous Work

Geophysical techniques have been used in near-surface investigations for decades

and have become increasingly important recently due to the development of high-



resolution crosshole tomography and the commercial availability of surveying tech-
niques. Many efforts have been made to jointly use geophysical and hydrogeological
data for site characterization. This section will briefly review some of the previous
work along two different lines. Section 1.3.1 reviews some commonly used geophys-
ical methods with the focus on the principal of each method and its applications in
environmental site characterization. Section 1.3.2 reviews several assimilation meth-
ods used for combining geophysical and hydrogeological data with the focus on the

advantages and limitations of using those methods.

1.3.1 Geophysical Characterization Methods

The commonly used geophysical methods for site characterization include sur-
face electrical resistivity, electromagnetic (EM) induction, ground-penetrating radar
(GPR), seismic methods, and borehole geophysical methods. Each of these methods

can be used for different field situations and for different goals of site characterization.

Electrical methods have been used in groundwater investigations for many years.
These methods measure electrical resistivity, the ability of electrical current to flow
through materials, by inducing a time-varying current (DC) or very low frequency
current into the ground between two current electrodes. The measured resistivity
can be used qualitatively to map subsurface stratigraphy [Zodhy et al., 1974] and to
locate geological structures such as buried stream channels [Burger, 1992] because of

the sensitivity of the current flow to the presence of geological layers. The resistivity



measurements can also be used quantitatively to infer information about hydroge-
ological parameters because of the physical connection between electrical resistivity
and hydrogeological properties. Electrical conduction usually takes place in fluids in
connected pore spaces, along grain boundaries, or within fractures, but not in the ma-
trix of the materials. Electrical resistivity is affected by material texture, grain size,
porosity, clay content, moisture content, and the resistivity of pore fluid. All of those
factors are related to hydraulic conductivity [Gassmann, 1951; Marion, 1990; Kli-
mento and McCann, 1990; Knoll, 1996;]. As a result, electrical resistivity can be used
to estimate hydraulic conductivity or transmissivity in porous aquifers [Kelly,1977;

Urish, 1981; Mazac et al., 1985].

Recent applications of electrical resistivity methods are due to the significant
progress in the development of crosshole electrical resistance tomography (ETR). This
method involves using a crosshole geometry, where electrodes are placed in boreholes
and at the surface; the differences in voltage between potential electrodes are then
measured. Data acquisition of the method is automated and capable of recording 3500
measurements per hour with only one technician [Rubin, 1998]. This efficiency in data
collection enables us to use the method to monitor flow and contaminant transport
processes [Alumbaugh et al., 2000] and movement of soil water content [Daily et al.,

1992; Ramirez et al., 1993; Daily and Ramirez, 1995; Zhou et al., 2001].

Electromagnetic (EM) methods have received much attention recently in ground-

water and environmental site assessments due to the ability of the methods to detect



conductive objects under the ground. Controlled-source inductive electromagnetic
(EM) methods use a transmitter to pass a time-varying current through a coil or
dipole on the earth surface. This alternating current produces a time-varying mag-
netic field that interacts with the conductive subsurface to induce time-varying eddy
currents, which give rise to a secondary EM field. Attributes of the secondary mag-
netic field, such as amplitude, orientation, and phase shift, can be measured by the
receiver. By comparing these collected attributes with those of the primary field, we
can detect subsurface conductors or distribution of electrical conductivity [Rubin et

al., 1998].

Since electrical conductivity is the inverse of electrical resistivity that can be
related to hydraulic conductivity, the measured conductivity data can be used to
estimate hydrogeological parameters. For example, EM methods have been used to
estimate soil water content [Kachanoski et al., 1988; Sheets and Hendricks, 1995
and to investigate the spatial variations of soil texture and pore fluid [Kachanoski et
al., 1988]. These methods have also been successfully used to detect both organic
and inorganic groundwater contamination plums [Buselli et al., 1990]. Because a
conductive subsurface environment or target is required to set up the secondary field
that can be measured by the receiver, the methods are suitable for detecting high-
conductivity subsurface targets, such as salt water saturated sediments or clay layers,

but unsuitable for detecting electrically resistive targets.

Ground-penetrating radar (GPR) is a relatively new geophysical tool that has



become increasingly popular due to its high resolution and the need to better un-
derstand near-surface conditions. GPR methods use electromagnetic energy at high
frequencies (10 to 1000MHZ) to probe the subsurface, and the propagation of the
radar signal depends on the electrical properties of the ground at the high frequency
[Davis and Anna, 1989]. The methods measure the velocity and the attenuation of
the radar waves, and these can be used to determine the dielectric constant or relative
permittivity, which is the major electrical property of geologic materials at high fre-
quencies. Generally, GPR methods have poor performances in electrically conductive
environments, such as saturated systems or in systems dominated by the presence
of expanding clays, and have better performances in unsaturated coarse-textured or

moderately coarse-textured soil [Hubbard et al., 1997].

GPR methods have found many applications in both saturated environments and
unsaturated environments with substantial nonexpanding clay fractions. Knoll et al.
[1991] used GPR methods to delineate near-surface conditions in a sand and gravel
aquifer at Cape Cod site in Massachusetts. Wyatt et al. [1996] used the methods to
detect shallow faults at the Savannah River site in South Carolina. Hubbard et al.
[1997] used GPR data to estimate water saturation and permeability in unsaturated
zones for sand-clay mixtures. Greenhouse et al. [1993] and Brewster and Annan,
1994] used the dielectric constants to detect contaminant transport in porous media.
Additionally, GPR methods were also used to infer spatial variation in subsurface

[Rea and Knight, 1998] and spatial correlation structure of hydrogeological parameters
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[Hubbard et al., 1999].

Seismic methods have been used to aid in environmental site characterization for
many years. These methods use artificially generated high frequency (100 to 500Hz)
pulses of acoustic energy to probe the subsurface [Rubin et al, 1998]. The com-
monly used seismic methods include seismic reflection, seismic refraction and cross-
hole transmission. The reflection method is better to be used for detecting structural
and stratigraphic information about the subsurface. For unconsolidated and unsatu-
rated materials, however, this is often difficult due to the lack of well-defined velocity
contrasts in the ground. Seismic refraction methods sometimes are chosen in site
characterization to replace reflection methods for determining the locations of the
water table and the top of bedrock and locating significant faults because they are
inexpensive. However, they yield much lower resolution than seismic reflection and

crosshole methods [Lankston, 1990].

Crosshole seismic methods have the highest resolution compared to other meth-
ods, and this permits a very detailed estimate of seismic P-wave velocity structure
[Rector, 1995]. These high-resolution seismic velocity data can be incorporated into
estimation of hydrogeological parameters. For example, Rubin et al. [1992] and Copty
et al. [1993] used seismic velocity together with hydraulic pressure data to map hy-
draulic permeability. Hyndman et al. [1994] coupled seismic velocity data with tracer
experiment data to estimate lithofacies and hydraulic conductivity. Although not yet

established as a field method, seismic imaging of organic contaminants in the labora-
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tory has provided a fundamental step toward the application of seismic tomographic

imaging of interwell contamination [Geller and Myer, 1995].

Borehole geophysical techniques as basic methods have been applied almost to all
the contaminant transport sites in the United States [Keys, 1997]. These methods
can obtain much more information from a well than can be obtained from drilling,
sampling, and testing [Keys, 1989]. Geophysical logs provide continuous analog or
digital records that can be interpreted in terms of physical properties of soil texture,
the contained fluid, and even construction of the well. The various borehole logs
can be used to estimate lithofacies or hydrogeological parameters along boreholes
[Doveton, 1986; Rogers et al., 1992; Benaouda et al., 1999] or used in conjunction with
surface geophysical data to provide information about aquifer and hydrogeological

parameters to a large extent [Lortzer and Berkhout, 1992; Copty and Rubin, 1995].

1.3.2 Data Assimilation Methods

The development of methods for combining hydrogeological and geophysical data
receives less attention than that of geophysical techniques in near-surface investiga-
tions. Most of studies using geophysical data focus on the improvement of geophysical
data acquisition and interpretation methods, not assimilation models. Due to the need
for better understanding of contaminant transport processes in porous media and the
availability of multiple sources of information for site characterization, however, an

effective data assimilation method is required for the purpose of environmental site
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characterization. The following is a brief review of the methods used for incorporating

geophysical data into estimation of hydrogeological parameters.

Petrophysical or empirical models, if they are available and applicable, are often
the first choice for connecting geophysical data to hydrogeological parameters. For
consolidated sediments, many petrophysical or empirical relations have been found
in the laboratory, which may be used to estimate hydrogeological parameters in field
conditions [Mavko et al., 1998]. For unconsolidated sediments, however, obtaining
reliable relations between geophysical measurements and hydrogeological parameters
is very difficult [Marion et al., 1992; Knoll, 1996; Bachrach and Nur, 1998; Bachrach
et al., 2000]. The major reason is that different types of geological materials in
unconsolidated sediments have much smaller contrasts in geophysical attributes than
the ones in consolidated sediments. Consequently, very few applications have been
found so far to directly use the petrophysical or empirical models obtained from
the laboratory for estimation of hydrogeological parameters in field conditions for

unconsolidated sediments.

Regression models, mostly linear regression models, were popular in the early
applications of geophysical data for estimation of hydrogeological parameters. Such
methods have been used by Kelly [1977] and Mazac et al. [1985] for resistivity data,
used by Han [1986] and Vernik and Nur [1992] for seismic data, and used by Topp et
al. [1980] for ground-penetrating radar (GPR) data. These models divide available

data into two parts, one for training and the other for testing. The testing results
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can be considered as the verification of the trained regression model. Advantages of
using these models are that they are simple and can be verified directly using field
data. Measurement errors and scale disparity between geophysical data and hydro-
geological parameters are also implicitly considered in the fitted relations. However,
the fitted models are site-specific and should be used with caution. In addition, these
methods are considered as a deterministic approach, and the estimated values are
often considered as the trend, drift or mean of hydrogeological parameters [Kitanidis,

1998].

Inverse models have been used to estimate hydrogeological parameters from piezo-
metric head measurements for many years [Yeh, 1986; Ginn and Cushman, 1990;
Sun, 1994; McLaughlin and Townley, 1996]. The models were also used by Lortzer
and Berkhout [1992] to combine seismic data and lithologic information for lithology
estimation and used by Hyndman et al. [1994] to combine seismic and tracer ex-
periment data for hydraulic conductivity estimation. Such methods provide a better
way to account for the special hydrogeological characteristics of individual sites and
have the ability to incorporate a wide range of field information [McLaughlin and
Townley, 1996]. Creating forward models when using the models for certain types of
geophysical data, however, may be very difficult or even impossible sometimes, such
as gamma-ray measurements. Additionally, ambiguity in geophysical data interpre-
tation may also cause problems in constructing forward models. The potential of

using inverse models for assimilation of hydrogeological and geological data still need
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further studies.

Geostatistical models for site characterization have been used for decades to es-
timate hydrogeological parameters using piezometric head and hydrogeological mea-
surements at boreholes [Dagan, 1985; Rubin and Dagan, 1987]. Geophysical attributes
and hydrogeological parameters in these models are considered as spatial random
functions, which form two- or three-dimensional random fields; the measurements of
the geophysical attributes and the hydrogeological parameters at some locations are
considered as samples of the random functions from the random fields. Using those
measurements or samples, we can first infer spatial structures of those random fields,
defined by variogram models and their associated parameters such as means, vari-
ances and integral lengths. Then we can interpolate or extrapolate those geophysical
and hydrogeological data, using kriging or cokriging methods, to the locations where
directly measurements are not available. Similar to regression models, these models
are also simple yet efficient in cases where well-defined spatial structures exist and
can be derived from sampling data. However, cross correlations between the hydro-
geological and geophysical data and between various types of geophysical data may

not always be identifiable from given measurements; they may be highly nonlinear.

Bayesian methods provide a general framework for data assimilation [Boz and
Tiao, 1973; Bernardo and Smith, 1994]. These methods have been shown by McLaugh-
lin and Townley [1996] to be consistent with numerous inverse models if prior infor-

mation is considered. The use of these models for combining geophysical and hydro-
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geological data can be found in Lortzer and Berkhout [1992], Copty et al. [1993], and
Copty and Rubin [1995]. The key focus of using the methods is the inference of the
likelihood functions. Many applications of Bayesian models rely on the assumptions
that the multiple spatial random variables have multivariate normal distributions, but
this is not a general case. Under field conditions, we often need to infer site-specific

likelihood functions directly from the in-situ hydrogeological and geophysical data.

1.4 Scope of the Dissertation

This dissertation is divided into five chapters, including the introduction and the
summary given later in the dissertation. Each of Chapter 2 through 4 focuses on one
important aspect of subsurface characterization and includes a separate introduction,
methodology, case study, and discussion or summary sections. These studies are
characterized by three factors: 1) the hydrogeological and geophysical data used in
each chapter are either real-life field data or synthetic data closely mimicking field
conditions, 2) the petrophysical relations between the hydrogeological parameters
and the geophysical attributes are site-specific and derived directly from the training
data sets using data-driven models, 3) the assimilation of the hydrogeological and

geophysical data is performed using Bayesian models.

Chapter 2 explores the use of ground penetrating radar (GPR) tomographic ve-

locity, GPR tomographic attenuation, and seismic tomographic velocity for hydraulic
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conductivity estimation. The hydrogeological and geophysical data were collected
from the Narrow Channel Focus Area at the South Oyster site in Virginia and in-
clude flowmeter and slug test data at each well and GPR and seismic tomographic
data along some transects. The integration of those data was carried out by the
Bayesian method based on a normal linear regression model. Since the GPR and
seismic tomographic data have very high resolution and small sampling volumes at
the site, the scale disparity between the hydraulic conductivity and the geophysical
tomographic data is relatively small. This allows us to derive the site-specific rela-
tions between the hydraulic conductivity and the geophysical attributes from both
hydraulic conductivity and geophysical data available at each well using a data-driven
model. Although the log-conductivity displays a small variation (¢ = 0.30) and the
geophysical data vary over only a small range, results indicate that the geophysical
data improve the estimates of the hydraulic conductivity. The improvement is most
significant where prior information is limited. Among geophysical data, GPR and

seismic velocity are more useful than GPR attenuation.

Chapter 3 considers a scale disparity problem. A Bayesian model is developed
to combine small-scale resistivity logs with large-scale electromagnetic (EM) surveys
data for mapping two-dimensional resistivity fields, which can be used later to infer
hydrogeological parameters. The method is oriented towards the Lawrence Livemore
National Laboratory project, where lithofacies and gamma-ray logs have good spa-

tial structures but resistivity does not. Firstly, the small-scale or high-resolution
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resistivity data from boreholes are interpolated to crosshole areas using the site-
specific relations among gamma-ray, lithofacies and resistivity obtained from field
data. Secondly, the estimated resistivity is considered as the prior and updated by
the collocated large-scale resistivity data obtained from crosshole EM surveys. The
relation between small- and large-scale resistivity is a reflection of the scale disparity
between those data, and it becomes weak when the scale disparity is large. Finally,
the updated resistivity estimate is compared to the corresponding prior estimate to
evaluate the effectiveness and limitations of the Bayesian model. Results reveal that
the proposed method enhances hydrogeological site characterization even when the

resistivity surveys have a relatively low resolution.

Chapter 4 focuses on the issue of petrophysical relations. A Bayesian model cou-
pled with a fuzzy neural network (BFNN) is developed to alleviate the difficulty of
using geophysical data in lithofacies estimation due to nonlinearity of cross correla-
tion between lithofacies and geophysical attributes. The Bayesian model allows for
the incorporation of spatial correlation of lithofacies as well as the nonlinear cross
correlation into lithofacies estimation. The prior estimate is inferred from lithofacies
measurements at boreholes using indicator kriging based on the spatial correlation,
whereas the posterior estimate is updated from the prior using the geophysical data
based on the nonlinear cross correlation. The key to using the model is the inference
of the likelihood function, which is obtained from training data sets using a fuzzy

neural network. The fuzzy neural network takes advantages of both fuzzy logic and
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neural networks. Fuzzy logic provides an approach to incorporate human knowledge
into lithofacies estimation, and this knowledge may be used to justify the rules learned
directly from data. Neural networks provide a powerful tool to fit nonlinear functions
from given input and output data with no or few assumptions about the form of the
functions. The efficiency of the method in lithofacies estimation is demonstrated by
two synthetic case studies generated from measurements at the Lawrence Livemore
National Laboratory site. Results show that the BENN model is the best method
among indicator kriging, indicator cokriging and the fuzzy neural network without

considering spatial correlation.
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Chapter 2

Estimating the Hydraulic Conductivity at
the South Oyster Site from Geophysical
Tomographic Data Using Bayesian
Techniques Based on a Normal Linear

Regression Model

2.1 Introduction

Heterogeneity of hydraulic conductivity in porous media is a major control of
groundwater flow and contaminant transport [Dagan, 1982; Gelhar and Azness, 1983].
Modeling of this heterogeneity is difficult and subject to a large degree of uncertainty

due to the lack of densely sampled in-situ hydrological measurements.

Conventional borehole techniques such as flowmeter and slug tests for collecting
hydrological data are costly, time-consuming and invasive; therefore, a large effort is

undertaken to explore the potential of using geophysical data to compensate for the
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scarcity of in-situ hydrological measurements [Rubin et al., 1992; Copty et al., 1993
and 1995; Hubbard et al., 1997; Rubin et al., 1998; Ezzedine et al., 1999; Hubbard and
Rubin, 2000]. Geophysical data used for hydrogeological characterization often in-
clude electrical resistivity [Kelly, 1977, Ahmed et al., 1988], seismic velocity [Rubin et
al., 1992; Copty et al., 1993 and 1995; Hyndman et al., 1994] and ground penetrating
radar (GPR) velocity [Hubbard et al., 1997 and 1999 |. Methods for integration of
hydrological and geophysical data include regression models [Kelly, 1977] , cokriging
models [Ahmed et al., 1988], inversion models [Rubin et al., 1992] and Bayesian mod-
els [Copty et al., 1993; Ezzedine et al., 1999] . Despite the difference in the methods
and the geophysical data, it has been widely recognized that the most difficult part of
the integration is tying hydrological measurements to geophysical data because of the
scale and resolution disparity between hydrological and geophysical measurements
[Ezzedine et al., 1999] , and because of their non-unique relationships due to the un-
certainty associated with field data acquisition and interpretation [ Urish, 1981]. This
chapter proposed an approach to dealing with this issue based on the normal linear
regression model. It extends the previous work reported in Copty et al. [1993] and
Ezzedine et al. [1999], and its main novelty is in formulating the petrophysical models

in a probabilistic fashion, using likelihood functions.

This chapter explores the potential use of GPR tomographic velocity, GPR to-
mographic attenuation and seismic tomographic velocity as well as hydrological mea-

surements for estimating hydraulic conductivity. It is focused on the usefulness of
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geophysical measurements for hydraulic conductivity estimation and on the integra-

tion of hydrological and geophysical data.

The approach given in this chapter is to explore the correlations between the
geophysical attributes and the hydraulic conductivity, following the ideas explored
in Rubin et al. [1992], Copty et al. [1993]|, Hyndman et al. [1994] and FEzzedine
et al. [1999]. Another approach to this problem is to analyze transient effects, for
example through time-lapse tomography [Shapiro et al., 1999]. This approach was
not pursued here because it requires injecting fluids, which can potentially influence
the geophysical signals and thus may have detrimental effects on the overall goals of

the field experiments.

This chapter is organized as follows. Section 2.2 introduces the South Oyster Site,
available data at the site and some preliminary data analyses. Section 2.3 describes
the Bayesian method and the normal linear regression model. Section 2.4 explores
the use of geophysical data within a Bayesian framework for estimating hydraulic

conductivity. Discussion and conclusions are given in sections 2.5.
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2.2 Site and Data Descriptions

2.2.1 South Oyster Site

The South Oyster Site is located near the town of Oyster on Virginia’s Eastern
Shore Peninsula between the Chesapeake Bay and the Atlantic Ocean. A field-scale
experiment has been undertaken by a multi-disciplinary research team within an
uncontaminated aquifer at the Oyster Site to evaluate the importance of chemical
and physical heterogeneity in controlling bacteria that are injected into the ground
for bioremediation purposes [DeFlaun et al., 2000] . The sediments at the South
Oyster Site consist of unconsolidated to weakly indurated, well-sorted, medium- to
fine- grained Late Pleistocene sands and pebbly sands. The upper 9 meters of the
South Oyster Site consists of the Wachapreague Formation, which was deposited in a
shallow, open marine to back-barrier environment, north of the tide-dominated mouth
of the Chesapeake Bay [Mizon, 1985] . The water table at the South Oyster Site is

located approximately 3 meters below ground surface.

Within the South Oyster Site two study focus areas exist: the South Oyster Focus
Area and the Narrow Channel Focus Area (Figure 2.1). Locations of the focus areas
were chosen based primarily on groundwater chemistry: the South Oyster Focus Area
is situated within a suboxic portion of the aquifer, while conditions at the Narrow
Channel Focus Area are predominantly aerobic. Forced gradient chemical and bacte-

rial tracer test experiments were performed within what is called the ’Aerobic Flow
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Cell’ of the Narrow Channel Focus Area in 1999 [Johnson et al., 2001]; similar exper-
iments will be performed within the "Suboxic Flow Cell” of the South Oyster Focus
Area in 2000. At both locations, extensive geological, geophysical and hydrological
data were and are being collected to characterize the subsurface prior to the tracer test
experiments. This study explores the use of geophysical tomographic data, collected
within the saturated portion of the Aerobic Flow Cell (approximately between depths
of 0-6.0 m below mean sea level [MSL]), for providing detailed hydraulic conductivity

estimates there.

The Aerobic Flow Cell layout within the Narrow Channel Focus Area is shown
in Figure 2.2. Hydraulic conductivity measurements are available at the wellbore
locations, indicated by circles, and geophysical tomographic profiles are available be-
tween several well pairs, as indicated by the solid lines. Descriptions of these available
data are discussed in next section. The chemical and bacterial tracer injection well
is NCB2. Groundwater flow direction and geologic dip are aligned approximately
parallel to the transect NCB2-NCM3, and geologic strike is aligned approximately
parallel with the transect NCT3-NCT1. Twenty-four multi-level samplers were in-
stalled between the wells NCB2 and NCM3, and NCT3 and NCT2 to detect the
bacterial passage of chemical and bacterial tracers over time during the tracer test
experiments as described by Johnson et al. [2001]. The log-conductivity estimates
within the Aerobic Flow Cell, obtained using geophysical tomographic data as de-

scribed in this study, will be used to help constrain the stochastic numerical flow
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Figure 2.1: Location of the South Oyster Site and the Aerobic Flow Cell (Golder
Associates, 1998).
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studies being performed to understand the transport experiment results [Scheibe et

al., 1999].

2.2.2 Field Sampling

Hydraulic Conductivity Measurements from Flowmeter Data

Hydraulic conductivity values were calculated from flowmeter and slug test data
within the Aerobic Flow Cell. Electromagnetic borehole lowmeter data were collected
from all wells whose locations are shown in Figure 2.2. Each well was approximately
9.4 m deep and had two 3.05 m long screens positioned in the lower 6.1 m, or from
approximately 0.5 m to 5.8 m below MSL [Waldrop and Hamby, 1998]. The flowmeter
data provided relative hydraulic conductivity measurements at discrete intervals of
0.15 m for each well. Slug test data, where available, were used to provide average
hydraulic conductivity values over the screened well intervals. Where slug test data
were not available, the geometric mean of the slug tests over the entire flow cell was
used. These average hydraulic conductivity values were then used to convert the
relative hydraulic conductivity measurements, obtained from flowmeter data, into

absolute hydraulic conductivity values for that well [Molz and Young, 1993].
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Figure 2.2: Aerobic Flow Cell in the Narrow Channel Focus Area (the circles de-
note flowmeter measurement wells and the solid lines denote geophysical tomographic
profiles).
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Geophysical Measurements from Tomographic GPR and Seismic Data

Both GPR and seismic tomographic data were collected within the Aerobic Flow
Cell along the transects indicated in Figure 2.2. For tomographic acquisition geom-
etry, GPR transmitting antenna (or seismic source) and GPR receiving antennas (or
seismic geophones) are located in separate wellbores, and direct energy from a trans-
mitting antenna in one wellbore is recorded by a receiving antenna located in the
other wellbore. The transmitter position is changed and the recording repeated un-
til both the transmitter and the receiver have occupied all possible positions within
the two wellbores. The direct electromagnetic or seismic P-wave wave travel time
between all transmitter/receiver positions, as well as the amplitude of the direct ar-
rival, is obtained from the recorded data. The interwell area is then discretized into
a grid composed of cells or pixels, and inversion algorithms are used to transform the
recorded travel time and amplitude information into estimates of velocity and atten-
uation, respectively, at each pixel. The discretization that is chosen for the inversion
is typically based on consideration of several factors including: the wavelength of the
propagating signal, expected material properties and their contrasts, acquisition ge-
ometry including wellbore spacing and geophone spacing (which control propagation
distance, raypath density and illumination angles) and inversion damping parame-
ters. The reader interested in different types of geophysical inversion approaches and
applications is referred to Parker [1994], Williamson and Worthington [1993], and

Rector [1995].
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The seismic tomographic profiles were collected along the same transects where
GPR tomographic data were collected (Figure 2.2. These data were collected using
a Geometrics Strataview seismic system with a piezoelectric source. The central
frequency of the pulse was 4000 Hz, with a bandwidth from approximately 1000 to
7000 Hz, rendering an average seismic wavelength of approximately 0.4 m. The source
and geophone spacing in the wellbores was 0.125 m, which resulted in dense raypath
coverage of over 13,200 traces in the interwell area. Based on the seismic wavelength,
small wellbore spacing of approximately 3-5 m, and dense raypath coverage over a
variety of illumination angles, a discretization of 0.25 m x 0.25 m was chosen for the
discretization inversion. The travel times were picked for all source-receiver pairs.
The travel time data were then inverted using a straight-ray algebraic reconstruction
technique [Peterson et al., 1985] to produce seismic velocity estimates for each 0.25
m x 0.25 m cellblock along all transects. The small velocity range observed in the
data suggests that distortion caused from ray bending should be minimal, and that

raypath density should be fairly evenly distributed in the interwell area.

Seismic amplitudes can yield information about the attenuative properties of sub-
surface sediments or rocks. In a manner similar to travel time inversion, amplitude
information can be extracted from the tomographic data and inverted for attenua-
tion in the interwell area. Many theories exist to incorporate the great variety of
mechanisms that can influence seismic wave attenuation. For porous, granular, sedi-

mentary rocks, the generally accepted mechanisms may be grouped into three broad
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categories: scattering attenuation, fluid-flow attenuation, and fluid-matrix attenua-
tion [Nihei, 1992]. Because of the variety of influences on the seismic amplitudes, it is
often difficult to extract meaningful characterization information from seismic ampli-
tude data. Additionally, seismic amplitudes are extremely sensitive to the presence
of trapped gas and the state of consolidation. The presence of a shallow water table,
small amounts of organic material (potential sources of trapped gas), and varying
states of consolidation of the Oyster sediments are suspected to have affected the
seismic source radiation pattern and coupling, as well as the receiver properties. If
not adjusted, these radiation pattern and coupling variations often yield inversion
artifacts [Vasco et al., 1996; Keers et al., 2000]. Because inversion artifacts were
observed in the Oyster seismic attenuation tomograms, the confidence in these data
was not high enough to use rigorously in this hydrological property estimation proce-
dure. Use of the Oyster seismic amplitude data is left for future studies, after further
investigation and pre-processing of the seismic radiation pattern and coupling effects

have been performed.

The tomographic GPR data were collected using a PulseEKKO 100 system with
200 MHz central frequency wellbore antennas. These data were collected using a
transmitter/receiver spacing in the wellbores of 0.125 m, which again resulted in over
13,200 traces per tomogram. The effective range of the radar propagation frequen-
cies was 40-140 MHz, rendering effective GPR wavelengths of approximately 0.5 m.

Although the wavelengths of the radar data are on average greater than those of the
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seismic data, the high signal to noise ratio of the radar data relative to the Oyster
seismic data permitted inversion using the same discretization as was used for the
seismic data of 0.25 m x 0.25 m. The similar discretization used for both the seis-
mic and radar tomographic data inversions facilitated the hydrogeological parameter
estimate computations. For the high radar frequencies employed and in the sandy
environment at Oyster, the radar propagation velocities are primarily governed by
variations in the dielectric constant, and the amplitudes are primarily affected by
variations in dielectric constant and electrical conductivity [Davis and Annan, 1989
of the interwell sediments. Unlike the seismic amplitude data, the Oyster radar am-
plitude radiation patterns and source-receiver coupling appeared to be consistent,
and thus inversion was performed on both the picked travel times and amplitudes
using straight-ray algebraic reconstruction techniques [Peterson et al., 1985; Peter-
son, 2000] to yield electromagnetic wave velocity and attenuation estimates for each

cellblock along all tomographic profiles.

2.2.3 Data Analysis

Since the goal of this study is to explore and test the use of geophysical tomo-
graphic measurements for hydraulic conductivity estimation, only those geophysical
data at the wellbores are used, where hydraulic conductivity data are available. Geo-
physical data at these wells were approximated by the ones at the cellblocks located

one column away from the wells rather than directly near the wells on their surround-
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ing transects. This is because geophysical data located directly near the wells may
be affected by the presence of disturbed zones around the wells [Peterson, 2000]. For
some wells such as NCB2, there are three transects passing them; the averaged values
of the geophysical data extracted from each transect are used. Consequently, geophys-
ical data are obtained at each well location with an interval of 0.25 m along vertical
directions. Since log-conductivity was sampled with an interval of 0.15 m rather than
0.25 m, the log-conductivity data at the vertical locations where geophysical data
were also sampled for each well are interpolated from the direct hydraulic conduc-
tivity measurements. Finally, a data set in which each log-conductivity value has
corresponding co-located geophysical data is created, which will be used later in this

chapter.

Hydraulic Conductivity

The histogram of natural log-conductivity at the Aerobic Flow Cell is shown in
Figure 2.3(a). It is asymmetric and negatively skewed, and suggests the existence
of two sub-populations of hydraulic conductivity—high- and low-conductivity zones

[Copty et al., 1995; Welhan and Reed, 1997].

The spatial structure of the log-conductivity was identified through covariance
analyses and the results are shown in Figure 2.4. The vertical covariance given in
Figure 2.4(a) can be fitted with an exponential covariance model with a range of

0.6 m and a sill of 0.30 for small lags (j0.6 m), but hole-type structure appears at
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large lags (;0.6 m). The hole effect may be the outcome of repetitive sequences or
periodic variations [Isaaks and Srivastava, 1989]. As pointed out by Journel and
Huijbregts [1978], the hole effect may also be due to an artificial pseudo-periodicity
of available data, and can be ignored in practice if not very remarkable. The lateral
covariances along the directions perpendicular and parallel to the geologic strike are
shown in Figure 2.4(b) and Figure 2.4(c), respectively. Both covariances are fitted

with exponential models with a range of 5 m.

Geophysical Data

Histograms of GPR velocity, GPR attenuation and seismic velocity are shown in
Figure 2.3(b,c,d), respectively. Similar to log-conductivity (Figure 2.3(a)), negative
skewness is observed in the histograms of GPR and seismic velocity. This suggests
correlations between log-conductivity and GPR and seismic velocity. The GPR and
seismic velocity change over small ranges and exhibit small variations (coefficient of
variation CV=1.7% for GPR velocity and CV=1.4% for seismic velocity) compared

to the GPR attenuation (CV=12.5%).

Correlations Between Log-Conductivity and Geophysical Data

Physical connections between log-conductivity and GPR velocity, GPR attenu-
ation and seismic velocity exist, but not straightforward. For instance, hydraulic

conductivity correlates to porosity, as evidenced by the Kozeny-Carman equation
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[Carman, 1956], and GPR velocity, GPR attenuation and seismic velocity also relate

to porosity [Knoll, 1996; Marion, 1990; Mavko et al., 1998].

Figure 2.5 depicts scatter-plots of log-conductivity versus GPR velocity, GPR
attenuation and seismic velocity based on the data available at the Aerobic Flow
Cell. The log-conductivity correlates with GPR and seismic velocity, and it gener-
ally increases as GPR and seismic velocity increase. The GPR attenuation and log-
conductivity appear to be uncorrelated, and the GPR attenuation associated with

low log-conductivity (log(k) < —2) seems to be less variable.

2.3 Methodology

Estimating log-conductivity suffers from much uncertainty due to the lack of
densely sampled in-situ hydrological measurements, and due to the absence of unique
relations between log-conductivity and geophysical data. To address this uncertainty,
a stochastic framework is adopted in which log-conductivity, GPR velocity, GPR

attenuation and seismic velocity are considered as spatial random functions.

2.3.1 Bayesian Formula

A Bayesian methodology is developed in this section for estimating log-conductivity
from hydrological and geophysical data. Let the random variable Y denote log-

conductivity and V,, a and V, denote GPR velocity, GPR attenuation and seismic
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velocity, respectively. All data are mean-removed and normalized by their corre-
sponding standard deviations. The log-conductivity estimate at a given location x,
in terms of probability density function (pdf), is obtained using the Bayes theorem

as follows [Boz and Tiao, 1973; Kitanidis, 1986]:

fy(y(x)) = CL{y(x) vg(x), a(x), vs(x)) fir (y(x)), (2.1)

where y(x) is an unknown value of Y being estimated at x, v,(x), a(x) and vy(x) are
the measured values of V,, o and V; at the same location, C' is a normalizing coeffi-
cient, L(y(x)|vy(x), a(x), vs(x)) is the likelihood function given v, (x), a(x) and vs(x),
and fi (y(x)) and fy(y(x)) are the posterior and prior pdfs of ¥ at x, respectively.
Note that only co-located geophysical data have been used to update the prior pdf
since they are most informative compared to the measurements at adjacent locations

[Copty et al., 1993].

The Bayesian method has been used for many years in the water resources field.
One of the earliest applications in groundwater hydrology was provided by Kitanidis
[1986] for analyzing parameter uncertainty in estimation of spatial functions. In that
work, the mean and covariance matrix of the posterior distribution were derived ana-
lytically by choosing a prior distribution that is conjugate to the likelihood function in
the sense that the posterior has the same form as the prior. Following the same line,
Copty et al. [1993] applied the method to subsurface characterization of hydrological
properties using geophysical data, and the analytical forms of the posterior mean and

variance were also obtained under certain assumptions. This study develops a new
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approach, which allows for large flexibility in the form of the likelihood function and

posterior pdf, to get numerical rather than analytical posterior mean and variance.

The Prior pdf

The prior pdf fy(y(x)) was estimated based on the hydraulic conductivity data
using kriging [Journel, 1989]. A similar approach was also used by Copty et al. [1993]
and Ezzedine et al. [1999] . The prior distribution is normal if Y is multivariate

normal [Deutsch and Journel, 1998] .

The Likelihood Function

The likelihood function L(y(x)|vy(x), a(x), vs(x)) plays a central role in the Bayesian
method and was inferred from the hydrological and co-located geophysical data. It

is expressed as follows [Bernardo and Smith, 1994]:

Ly(x)[v4(x), a(x), vs(x)) = fy, (0,(x)[y(x)) - fala(x)]y(x), v4(x))

S (0s(%) [y (%), vg(x), (x)),
where f(:|-) denotes a conditional pdf. If Vj,, a and V; are independent such that f,
(a(3) [§(x), v, () = fu (0(x) |y(x)) and fu, (0, (%) [y(x), 1,(x), (%)) = i, (0, (%) [y(x),
the inference of the likelihood function becomes simple since each conditional pdf in-

volves only two variables. This is however not the case in the present study where
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there are four dependent variables (Y, Vj, @ and V) and the prior pdf needs to be

updated based on all the co-located geophysical data.

2.3.2 Normal Linear Regression Model

The normal linear regression model [Stone, 1995] provides a systematic approach
to the inference of the conditional pdfs shown in equation 2.2. A similar approach has
also been suggested by Kitanidis [1991] to model a linear drift of a spatially dependent
variable, such as log-conductivity. This section will demonstrate the inference of
fv, (vs(x)|y(x), vy(x), @(x)), and the method can be applied to the other functions
appearing in equation 2.2.

In the normal linear regression model, the seismic velocity V; at x is assumed

to be normally distributed with mean p and variance o2

. The mean p is assumed
to be a member of the linear function space G whose basis functions consist of m
distinct monomials g1(x), g2(x), -+, gm(X), formed from combinations of powers and
products of y(x), v,(x) and «(x), such as 1, y(x), vy(x), a(x), y*(x), v2(x), a?(x),

9

y(x)vy(x), y(x)a(x) and vy(x)a(x). It is modeled as follows:

p(x) = iﬂigi(x), (2.3)

where 3; is a coefficient of basis function g;(x), i = 1,2,---,m. The variance o? is
taken to be a constant, independent of y(x), v,(x) and «(x). The final set of basis

functions is determined by following a model selection procedure, given later in this
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section.

Estimation of ; and o

The mean function p(x) and the variance o are estimated from the data (vs(x;),
y(x5), vy(x;), a(x;)), 7 =1,2,---,n, where y(x;) is the log-conductivity at location
x;, and vg(x;), vy(x;) and «(x;) are the dimensionless co-located seismic velocity,

GPR velocity and GPR attenuation, respectively.

Estimating 3, (2, - -+, B is achieved by minimizing the residual sum of squares
RSS = (vs(x5) — pu(x;))>. (2.4)
7=1

Let /3: (617 627 ) ﬂp)T and Z = (US(XI)J Vs (X2)7 T US(Xn))TJ where the exponent T
denotes the transpose operator. The estimate B of B, which minimizes equation 2.4,
is given by

8= (D'D) 'D”Z, (2.5)

where D is a design matrix, given by

gi(x1)  g2(x1) - gm(x1)
91(x2)  g2(x2) -+ gm(x2) (2.6)
gl(Xn) gZ(Xn) Tt gm(xn)

Once (i, (a2, -+, B, are estimated, the mean and the variance of fy, (vs(x)|y(x),
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vg(x), (x)) are defined as follows:

A(x) = il&gi(xx 2.7)
) 1 < N 2
7 = S () — i) (2.8)

7=1

It is clear that the estimate 62

of the variance in equation 2.8 is stationary and
independent of locations. The estimate ji(x) of the mean function in equation 2.7,

however, depends on y(x), vy(x) and a(x) and thus on the location x.

Selection of Basis Functions

Selecting and eliminating basis functions is the key to the normal linear regression
model. The initial set of the basis functions consists of all possible distinct monomials
of y(x), vy(x) and a(x) with a degree of 4 at most. The final set is obtained from
the initial set by deleting some of the initial basis functions based on certain criteria

described in the following.

Removing or retaining a basis function ¢;(x) (1 < ¢ < m) from the initial set is
based on testing of the null hypothesis H, : 3; = 0, at the common testing level 0.05.
The statistic « = (3;/SE(f;) is first computed, where SE(/3;) is the standard error of
(3;, which is the i-th element in the diagonal of the matrix 62(D”D)~" (52 is obtained
from equation 2.8 and D from equation 2.6). This statistic follows the t-distribution
with n—m degrees of freedom, based on the properties of the normal linear regression

model [Stone, 1995]. Consequently, the p-value, defined by 2(1 — ¢,_,,(Ju|)) where
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tn_m is the probability function of the t-distribution with n — m degrees of freedom,
can be calculated and compared to the testing level 0.05. If the p-value is larger than
0.05, the null hypothesis is accepted and g;(x) is removed from the basis function set;

otherwise, the null hypothesis is rejected and g;(x) is retained.

The procedure of deleting basis functions is an iterative process, which is exe-
cuted as follows: (1) fitting a model u(x) as shown in equation 2.3 to the sampled
data and obtaining 3; (equation 2.5) and SE(3) (i = 1,2,---,m); (2) computing
their corresponding p-values; (3) comparing all the p-values with 0.05; (4) removing
the basis function with the largest p-value from the initial set. The procedure is re-
peated until no members of the basis function set can be removed. The same method
is also applied to determine the other pdfs, which compose the likelihood function

(equation 2.2).

2.4 Hydraulic Conductivity Estimation

2.4.1 QOutline of the Approach

To apply and test the previous approach, the hydraulic conductivity and geophys-
ical data available at the Aerobic Flow Cell are split into a training set and a testing
set. To avoid the bias in selecting the testing set, each well shown in Figure 2.2 is in
turn considered as a testing well; thus there are ten different combinations of training

and testing sets. For each of those combinations, the steps outlined in Figure 2.6 are
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followed, which can be grouped into three categories:

1. Prior estimation: The spatial correlation structure of log-conductivity is first
inferred from the hydraulic conductivity data of the training set and the mean
log-conductivity and its variance at each testing location are then estimated
using kriging. The prior estimate is a random variable having the normal dis-

tribution with the mean and the variance.

2. Posterior estimation: The conditional pdfs, which form the likelihood function
as shown in equation 2.2, are derived from both hydraulic conductivity and
geophysical data of the training set using the normal linear regression model.

The posterior pdf is obtained by following equation 2.1.

3. Evaluation: Various statistics of the prior and posterior pdfs are compared with
the actual measurements to evaluate the proposed model. More details on that

are given in the subsequent sections.

2.4.2 Estimating the Hydraulic Conductivity Using GPR Ve-
locity
Figure 2.7 compares the log-conductivity measurements at well NCS7 with the

means of the prior pdfs and the posterior pdfs updated using its co-located GPR

velocity only. The improvement of the posterior mean estimates is not significant,
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Figure 2.7: Comparisons of measurements, prior and posterior means at testing well

NCS7.

and both prior and posterior means follow quite closely the trend outlined by the

actual measurements. This is because well NCS7 is close to wells NCS9 and NCT2

(Figure 2.2) which belong to its training set, and thus the prior mean estimates based

on the hydraulic conductivity data alone are fairly accurate. Negligible improvement

was also observed at other testing wells located in close proximity to training wells,

such as wells NCS9, NCS11 and NCS18.

As the distances between wells of the training sets and the testing wells increase,
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Figure 2.8: Comparisons of measurements, prior and posterior means at testing well
NCM3.

the contribution of the co-located GPR velocity data becomes apparent. This is
demonstrated in Figure 2.8 which compares actual measurements with the means
of prior and posterior pdfs at well NCM3, located no less than 4.95 m away from
other training wells. The posterior estimates follow more closely the measurements

compared to the prior estimates. Similar results were also observed at the testing

wells NCT1, NCT2, NCT3, NCS24 and NCB2.

Table 2.1 shows the vertical averages of standard deviations of prior pdfs and
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Table 2.1: Comparisons of prior and posterior standard deviations

Prior Posterior
Testing Well standard deviations standard deviations Reduction(%)

Oprior Opost (Uprior - Upost)/aprior
NCS7 0.47 0.38 19
NCS9 0.42 0.32 24
NCS11 0.47 0.37 21
NCS18 0.49 0.37 24
NCM3 0.60 0.42 30
NCB2 0.53 0.38 28
NCS24 0.55 0.40 27
NCT1 0.59 0.42 29
NCT2 0.52 0.39 25
NCT3 0.53 0.40 25

posterior pdfs updated using GPR velocity for each well shown in Figure 2.2. The
prior variances are estimated from kriging, and the posterior variances are computed

from the posterior pdfs using numerical integration:

ORoa(X) = [ () = (Y ()23 (y () ey, 2.9)

where (Y (x)) is the mean of the posterior pdf fi (y(x)) at x. For all the testing wells,
the standard deviations are significantly reduced by the use of GPR velocity, and the
reductions at wells NCM3 and NCT1 are most evident because their prior estimates
are less informative due to the relatively large distances of these wells from the wells

used for calculating the priors.

Figure 2.9 shows the 95% confidence intervals at well NCM3 for prior and posterior

estimates. The errors predicted by the prior model are on the conservative side, and at
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each testing location, the updating provides more narrow bounds, which are consistent

with the actual errors.

2.4.3 Estimating the Hydraulic Conductivity Using GPR Ve-

locity, GPR Attenuation, and Seismic Velocity

This section explores the efficiency of using GPR velocity, GPR attenuation and
seismic velocity in the hydraulic conductivity estimation. Since the addition of GPR
attenuation and seismic velocity after using GPR velocity did not lead to further
changes in the estimates of the mean log-conductivity in the current study, the dis-

cussion focuses on prior and posterior variances of all the ten testing wells.

Figure 2.10 compares the averaged actual errors over the ten testing wells with
the averaged standard deviations of prior and posterior pdfs along depth and over
the ten testing wells for different combinations of geophysical data. The actual errors
are the spatial averages of absolute differences between actual and estimated values
along each testing well. It is evident that the standard deviations of the model using
the hydraulic conductivity data only are much larger than the actual errors, but with
the addition of various types of geophysical data, the standard deviations consistently

decrease until they are of the same order as the actual errors.

To evaluate the efficiency of geophysical data in reducing uncertainty, different

combinations of geophysical data are used in the hydraulic conductivity estimation,
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Figure 2.10: Comparison of the standard deviations and actual errors, which are
the space averages along the wells of the absolute differences between actual and es

timated values.
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and calculate their reductions in the standard deviations, given by

Tprior — Tpost o 100%, (2.10)

Oprior
where oy and 0,0, denote the vertical averages of the standard deviations of the
prior model and of the posterior model at a testing well, respectively. Table 2.2
summarizes the averaged reductions over the ten testing wells for different models.
GPR and seismic velocity were found to be more useful than GPR attenuation as only
one type of geophysical data is used. The zero reduction in the standard deviations by
GPR attenuation reflects either that the current method does not effectively account
for the non-linear relationship between the log-conductivity and the GPR attenuation,
or that the GPR attenuation is non-informative at this site. As two or more types of
geophysical data are used, the average reductions in the standard deviations increase
but only incrementally. This is the outcome of the various degrees of correlations
that exist between the various types of data which leads to redundancy in data and

hence to only minor improvements.

2.5 Discussion and Conclusions

This chapter paper explored the use of geophysical tomographic data for hydraulic
conductivity estimation using a Bayesian framework. The prior estimates were in-
ferred from the hydraulic conductivity data measured at wellbores, and the posterior

estimates were obtained by updating the prior using co-located geophysical data.
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Table 2.2: Reductions of the standard deviations using various types of geophysical
data

Number of Data Types Data Types Average Reduction Standard Errors

(%) (%)

1 Vg 25.3 3.5
« 0.0 N/A

Us 29.2 3.5

2 Vg, Q0 28.7 3.6
Vg, Ug 31.9 2.7

o, Vg 31.0 4.1

3 Vg, O, Ug 34.0 4.1

vy GPR velocity, vs seismic velocity and o GPR attenuatio n

Both the prior and the posterior estimates were compared with the actual measure-
ments to evaluate the usefulness of geophysical data for hydraulic conductivity esti-

mation. The key findings of this study are summarized below.

Geophysical tomographic data hold the potential to improve estimation of hy-
draulic conductivity even when log-conductivity displays small variations and geo-
physical data vary over narrow ranges. This is possibly true also for domains of large
variability, since large variability implies large contrasts in the geophysical measure-
ments and consequently, better correlations between the hydraulic conductivity and
the geophysical measurements. Thus, the advantages of using geophysical data in the
hydraulic conductivity estimation may become more evident, as shown in Rubin et
al. [1992], Copty et al. [1993], Hyndman et al. [1994], Hubbard et al. [1997], Ezzedine

et al. [1999] and Hubbard and Rubin [2000].

The Bayesian approach coupled with the normal linear regression model is effective
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in combining geophysical data into hydraulic conductivity estimation. Petrophysical
models relating hydraulic conductivity to geophysical measurements are often non-
linear and hard to define [Hyndman et al., 1994; Ezzedine et al., 1999], yet well-defined
models are critical for successfully employing geophysical data in the estimation. In
this study, petrophysical models are summarized in the form of likelihood functions,
and each of the likelihood function is expressed as the product of several conditional
pdfs (equation 2), which were defined using the normal linear model. This method
alleviates the difficulty commonly encountered in the inference of petrophysical mod-
els for multivariate dependent variables by following a systematic model selection
procedure. Another advantage of the method is that the normal linear model pro-
vides flexibility in fitting the non-linear relations between hydraulic conductivity and
geophysical measurements since the likelihood functions can be of an arbitrary shape
even if each of the conditional pdfs (equation 2) are assumed to be normal. However,
this method is limited in situations where each of the conditional pdfs (equation 2)

is multimodal and asymmetrical. In this case, other techniques, such as described in

FEzzedine et al. [1999] and Hubbard and Rubin [2000]., are needed.

Using site-specific petrophysical models, as done in this study, rather than em-
pirical relations obtained in the laboratory is a rational and efficient way to employ
geophysical data in estimation of hydraulic conductivity. Petrophysical relations be-
tween hydraulic conductivity and geophysical measurements in unconsolidated sed-

iments are more difficult to obtain compared to those in consolidated sediments or
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rocks [Marion, 1990; Knoll, 1996; Bachrach and Nur, 1998; Bachrach et al., 2000] .
No empirical models are currently available to relate hydraulic conductivity to geo-
physical measurements in unconsolidated sediments, due to the disparity between the

frequencies used in the laboratory and those employed in the field.
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Chapter 3

Bayesian Method for Hydrogeological
Characterization using Borehole and
Geophysical Data: Theory and
Application to the Lawrence Livemore

National Laboratory Site

3.1 Introduction

Combining ground-surface or crosswell geophysical surveys with well logs for en-
hancing the quality of subsurface characterization has been the goal of recent studies.
The primary motivation has been the recognition that geophysical surveys offer unique
opportunities for improving crosswell interpolation, and are particularly promising in
situations of data scarcity. Hyndman et al. [1994] developed an inversion algorithm
that employs both seismic crosswell travel times and solute tracer concentration to

estimate the interwell geology and therefore the hydraulic parameters. Sheets and
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Hendricks [1995] used regression techniques to build a site-specific petrophysical re-
lationship between the soil water content estimated from borehole neutron probes
and the bulk electrical conductivity of the soil estimated from electromagnetic (EM)
induction surveys, and this model was then used for mapping the soil water content.
Daily et al. [1992] conducted an infiltration experiment to build a site-specific re-
gression model between the resistivity and the moisture and showed the potential
capability of Electrical Resistivity Tomography (ERT) to monitor capillary barriers
performance and flow in the vadose zone. Doyen [1988] used cokriging to estimate
porosity from surface seismic data and well logs. Cassiani et al. [1998] included
seismic tomography data and sonic data using a geostatistical approach to improve
the hydraulic conductivity estimation. Lucet and Mavko [1991] combined crosswell
seismic tomography, logs and petrophysical relationships between porosity, velocity
and clay content to estimate porosity and lithofacies. Rubin et al. [1992] and Copty
and Rubin [1995] used a Bayesian approach and maximum likelihood principles to
combine seismic velocity with sparsely measured hydraulic conductivity and pressure
for the purpose of mapping the spatial distribution of the hydraulic conductivity.
Hubbard et al. [1997] used a similar approach to incorporate the spatial distribution
of dielectric constant obtained from ground penetrating radar (GPR) to estimate soil
saturation and permeability in the vadose zone. More recently Hubbard et al. [1999]
combined acoustic tomography with borehole data to estimate the spatial covariances

of the log-conductivity.



o7

A few observations based on these studies are as follows: (i) No universal meth-
ods or petrophysical models are available for converting geophysical attributes to
hydrogeological properties; (ii) The most challenging problem is tying well-logging
measurements to the geophysical surveys. This issue involves problems of scale dis-
parity between different measurements and inconsistencies in the methods used for
data acquisition and interpretation. The last point is manifested by noticing that
resistivity at the Lawrence Livemore National Laboratory (LLNL) site was measured
using several tools with different support volumes and some of them lead to dramat-

ically different results.

This chapter investigates the use of geophysical surveys for mapping lithofacies
and thus soil properties in the subsurface using a Bayesian approach. The study
focuses primarily on the issues associated with the assimilation of weakly or non-
linearly correlated data with different spatial resolutions in a geologically complex

environment.

Section 3.2 introduces the LLNL superfund site, followed by geostatistical anal-
yses of the data. A petrophysical relationship between lithofacies and geophysical
attributes is also presented. Section 3.3 outlines in detail the proposed approach for
data assimilation, and section 3.4 introduces the synthetic electromagnetic survey.
Section 3.5 discusses Bayesian updating of pre-simulated lithofacies and resistivity
random fields and evaluates the effectiveness of this method, and some findings of

this study are summarized in section 3.6.
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3.2 Site Description, Sources of Data, and Geosta-

tistical Analysis

3.2.1 Lawrence Livermore Superfund Site

Volatile organic compounds (VOC) were used at the LLNL superfund site (Fig-
ure 3.1) as solvents when the site was an active Naval Air Force Base in the 1940’s.
Fuel petroleum hydrocarbons associated with a gasoline spill have also contaminated
the underlying aquifer. The VOCs are classified as mainly Trichloroethylene (TCE),
Tetrachloroethylene(PCE) and Chloroform. Tritium and Chromium are also present
but in smaller concentrations [Noyes, 1991]. The site is located in an unconsolidated
alluvial basin. The hydrogeology of the area is very complex, but a considerable
amount of geological, geophysical, hydraulic and geochemical data are available. The
data provide a unique opportunity to study the relationship between hydraulic con-
ductivity and sediment texture. This study focuses on the area near treatment facility
D (TFD) shown in Figure 3.1, and the detailed locations of the boreholes used in the

analysis are depicted in Figure 3.2a.

The contaminants are distributed within a thick, complex sequence of unconsoli-
dated alluvial sediments [Blake et al., 1995]. A hydrostratigraphic analysis has been
conducted to divide this sequence of layers into hydrostratigraphic units (HSUs).

These latter are defined as sedimentary sequences whose permeable layers show evi-
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Figure 3.1: Site map of LLNL showing treatment facility (TF) areas and total volatile
organic compounds (VOCs) contoured without respect to depth [Blake et al., 1995].
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dence of hydraulic connectivity, using several complementary sources of information
[Blake et al., 1995], including chemical (concentration in ground water and soil), geo-
logical (lithological core description), geophysical (wire-line borehole electrical logs),
and hydrogeological (hydraulic well tests, hydraulic communication between layers).
Thicker aquitards were also defined as HSUs, while minor aquitards define HSU
boundaries across which little or no vertical hydraulic leakage takes place (Figure

3.2b).

3.2.2 Lithological and Geophysical Raw Data

The study focuses on the cross section between wells 1206, 1208, 1205, 1252, 1250,
and 1251-1254 (Figure 3.2a) within HSU2 as shown in Figure 3.2b. Types of data
collected along the wells include geophysical and lithofacies well logs, which have
different spatial resolutions, varying from 3 cm to 15 cm, along the vertical direction.
Spatial statistics of the geophysical attributes and lithofacies are inferred from all the

data available at those wells.

The collected geophysical log data include induction resistivity, short and long
normal resistivity, spontaneous potential, single point resistance, guard resistivity,
caliper, and gamma-ray, among others. A general description of those log types is
given by Keys [1997]. Lithofacies were classified as 16 different types, including gravel,
clay, sand, silt, and their mixtures, such as, gravely clay and clayey sand. To simplify

the lithofacies mapping and because the main concern is to map the high and low
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hydraulic conductivity zones, only two main classes will be used: 1) silt, including

silt, clay, and their mixtures, and 2) sand, including sand, gravel, and their mixtures.

3.2.3 Geostatistical well log analysis

Since HSU2 is not horizontal or not defined by constant thickness (Figure 3.2b),
the vertical coordinates were normalized by the average thickness of the HSU, which
is approximately 17 m (Figure 3.3). Indicator semivariograms were used to describe
the spatial variability of lithofacies based on a binary representation for sand and silt,
and semivariograms were used to describe the spatial variability of gamma-ray (G)
and resistivity (R). Those variables were investigated with and without log transfor-
mation. Semivariograms of other geophysical attributes within each lithofacies were
also investigated, but only the statistics of these three variables are presented because

they form the basis of this method.

Lithofacies Indicator Semivariograms

Based on the lithofacies classification and adopting an indicator coding of 0 for
sand and 1 for silt, a geostatistical analysis was performed. Figures 3.4a and 3.4b
show the vertical and horizontal indicator semivariograms. Because the vertical semi-
variogram was computed after normalizing the depth by the thickness of HSU2, the
maximum lag is equal to the average thickness. The volume fractions of silt (p) and

sand (1 — p) are 0.48 and 0.52, respectively. The sills of the semivariograms are 0.25,



63

1208
1206

Te] N o i <
o [Te] Te] n [Te]
N N N N N
- — — - —
M \ A

17m —»

om —»

Om 230m

Figure 3.3: Vertical cross section of the present study over HSU2. Distances are
reported from well 1206 and along the cross section, and available data along the
wells are depicted using continuous vertical lines.
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which is approximately equal to the theoretical value of the variance p(1 — p). The
fitted theoretical models are exponential with a range of 1.5 m in the vertical direction

and 30 m in the horizontal direction.

Resistivity Measurement Analysis

The analogies between the flow of electrical current and fluid through porous media
have made electric logging of formation resistivity a commonly employed technique
in geophysical prospecting [Keys, 1997]. Since a crosswell electromagnetic resistivity
survey is considered at the LLNL site, resistivity well logs were used as the primary

link for correlating the tomographic survey with other soil properties.

Semivariograms of induction resistivity, guard resistivity and short and long resis-
tivity were investigated, but well-defined, long-range patterns of spatial correlation
of the resistivity were not found. Despite the apparent lack of the spatial correlation,
the combination of induction resistivity with gamma-ray and lithofacies logs offers an

opportunity for indirect projection of gamma-ray and lithofacies pairs into resistivity.

Induction resistivity among all the resistivity logs was chosen as the primary can-
didate for correlating with the resistivity survey based on several reasons. (1) The
measurement, procedure does not require conductive fluid in the borehole or direct
physical contact with the formation. (2) Induction tools minimize the contribution
of the borehole, invaded zone and surrounding formations on the measurement. (3)

Induction logs are automatically corrected for skin effect during recording. (4) Al-
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rection and (b) horizontal direction. Both theoretical semivariograms are found to be
exponential.
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though induction tools were designed for nonconductive borehole environments, they
were found to yield excellent measurements in water-based mud, provided that the
water is not too salty, the formation is not too resistive, and the borehole diameter
is not too large [Keys, 1997]. The induction log measurements at the LLNL are of

excellent quality, and this reinforced the previous choice.

Gamma-Ray Analysis

Gamma-ray logs measure naturally occurring gamma emissions around the bore-
hole. The sources of the radioactive decay series in nature are primarily Potassium
40, Uranium 238 and 235, and Thorium 232 [Serra, 1984]. Potassium 40 is by far the
most abundant radioactive isotope found in sediments. As the content of Potassium
40 increases, the response of the gamma-ray probe increases. Gamma-ray response
decreases from shale and clay, to silt-stone, to sandy silt-stone, to sandstone and

gravel.

Conversion of gamma-ray measurements to shaliness helps to remove inconsis-
tencies in the data introduced by using different tools and calibration techniques
[Doveton, 1986; Hill, 1986]. Shaliness for unconsolidated rock is given by [Serra,
1984]:

S = 0.083[2>"¢ — 1], (3.1)
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where I is the gamma-ray index defined as follows [Serra, 1986]:

Ig= ——TMin
“ GMaa:_GMin

(3.2)

Figures 3.5a and 3.5b depict the vertical and horizontal semivariograms of the
shaliness and their corresponding fitted models. The best fit was found to be the
Gaussian model with a nugget of 0.011 m and ranges of 2.5 m in the vertical direction
and 25 m in the horizontal direction. Integral scales are set to 1.46 m (~ 1.5 m) in

the vertical direction and 14.43 m (~ 14.5 m) in the horizontal direction.

Shaliness vs. Resistivity Relationship

Figure 3.6a displays a cross-plot of the resistivity and the shaliness. Two main
clusters are shown, corresponding to the different lithofacies. It suggests that resis-
tivity /shaliness pairs are useful for lithofacies identification. The overlap between the
sand and silt clusters indicates that a unique identification of lithofacies based on
resistivity and shaliness is not possible for all pairs. The main reason for the overlap
between the two clusters is data reduction: the lithofacies classification originally
consisted of 16 members, but now only two. Despite the ambiguous interpretation
of several pair combinations, it appears that this cross-plot is a good analytical tool.
This is one of the fundamental results of this analyses so far because it suggests a
systematic approach for tying the resistivity survey with well logging information,

which is fully developed in Section 3.3.
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Figure 3.5: Shaliness experimental and theoretical semivariograms: (a) vertical di-
rection and (b) horizontal direction. Both theoretical semivariograms are found to be
Gaussian.
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Figure 3.6: (a) Petrophysical relationship between shaliness and resistivity plotted
from available data at the wells crossing HSU2. (b) Generic scheme for constructing
resistivity pdfs to conditional lithofacies and shaliness.
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Figure 3.6a was obtained using all well log data within the HSU2. The use of
shaliness instead of gamma-ray activity considerably improved the clustering analysis.
This analysis has been applied to other HSUs as well, and a behavior similar to Figure

3.6a was observed in all the cases.

3.3 Bayesian Data Assimilation

In an ideal situation, the geophysically measured attributes may correlate well
with the hydrogeological ones, such as permeability, and the conversion of the geo-
physical survey to a hydrogeological distribution map is straightforward. In a more
realistic situation, such as the one described here, the conversion of the geophysi-
cal attributes to the hydrogeological ones is convoluted and non-unique. Couple of
difficulties exist in the implementation of the geophysical survey. Firstly, the survey
resistivity is of relatively low resolution, but high-resolution permeability images need
to be developed. This causes a scale disparity problem. Additionally, although the
database available at the site was developed over many years, some types of data are

still not available. For example, the cores were not tested for permeability.

The purpose of this section is to develop a conceptual data-driven approach for
lithofacies mapping based on the well log data. This approach is general in its basic
principles, but meanwhile is site-specific since the employed petrophysical models are

not universal. The general approach is stochastic, which is justified given the large
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uncertainty associated with crosswell interpolation, with the petrophysical models,
and with the interpretation of the geophysical surveys. The rationale for this approach

is based on the following observations:

1. Resistivity and shaliness can be used for lithofacies identification through the
cross-plot (Figure 3.6a). Once a type of lithofacies is determined, further map-

ping of hydrogeological properties can be pursued.

2. Facies identification based on the shaliness-resistivity cross-plot is non-unique

due to some overlap between the sand and silt clusters.

3. Borehole resistivity measurements display a short correlation range, and it is
impractical to develop spatial images of the resistivity using crosswell geosta-

tistical interpolation.

4. Shaliness displays a well-defined spatial structure. It can be used for projecting
resistivity measurements indirectly through a combination of geostatistical in-
terpolation/simulation techniques, in conjunction with the nonlinear correlation

with the resistivity, as expressed through the cross-plot (Figure 3.6a).

Based on these observations, an approach that consists of sequentially generating
a series of collocated attributes is proposed. At the basis of the hierarchy, images
of the lithofacies are generated, conditional to well logs and possibly also to the
survey resistivity. Each lithofacies image serves then as the basis for generating

a series of shaliness images, again conditional to well data. The shaliness images
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are then used to correlate the survey resistivity with the hydrogeological attributes
obtained experimentally. Since all the generated images are conditioned to the well
data and have the same underlying spatial structure, they are physically plausible.
The variations between the images provide a measure of the spatial variability and
uncertainty associated with the estimation. The focus here is on resistivity estimation,
but it can be converted to porosity and hydraulic conductivity through well-known
models such as Archie’s, Waxman-Smits’, Kozeny-Carmen’s [Mavko et al., 1998], or

through site-specific calibration curves [ Daily et al., 1992].

3.3.1 Outline of the approach

Figure 3.7 is a flow chart showing the proposed approach, which includes the

following four steps.

Step 1: Generating lithofacies images using sequential indicator simulation

(SIS)

The lithofacies is defined through an indicator variable I according to [Rubin,

1995]:
1 if x is in silt
I(x) = (3.3)

0 otherwise

Note that boldface letters denote vectors, i.e., x is a location coordinate vector. Lower-

case i is a realization of the spatial random function (SRF) I, which is assumed



73

step 1 step 2

»- »>-

J1(x)(ilobservations at the wells) [s(x)(sli, measurements at the wells)

N\

step 3

f]’{(x) (r|s, 4, measurements at the wells)

l

Receiver Transmitter
| A

step 4

Geophysical survey (p is measured) fg(x)(ﬂs, i,p)

Figure 3.7: Flow chart of the approach
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stationary and characterized through its unconditional expected value:
E{I} =p, (3.4)

where E denotes the expected value operator and p is the volume fraction of silt. The
spatial structure of the variable is shown in Figure 3.4a and 3.4b and defined through

the semivariogram:

1) = S B{Tx) ~ p)I(K) —p)}, (35)

where x and x’ are two location vectors.

The unconditional statistics define the crudest level of probabilistic characteriza-
tion. A more advanced characterization is possible through the conditional moments
of I. These statistics are the cornerstone of the SIS algorithm [Deutsch and Journel,
1998; Rubin and Bellin, 1998]. The SIS algorithm consists of computing the expected

value of I conditional to the borehole data:
p¢ = E°{1} = F{I|{measurements}} (3.6)
with a superscript ¢ denoting conditioning.

A realization of I can be drawn once p° is defined because I is binary and p° is
statistically exhaustive. The process of computing p¢ and drawing realizations is done
sequentially over a grid. Spatial continuity is maintained by conditioning I on both

well data and the previously generated values. Specifically,

= pt S AIx0) — 1), (37)

n=1



[6)

where the weights A, are obtained by solving the following system of linear equations:

N
Z)\nr)/[(xmaxn) :’}/[(Xm,X), leJ"'JN' (38)

n=1
The important point to note is that N, the number of lithofacies measurements,
includes all the observations as well as all the values previously generated at other

locations.

Step 2: Generating shaliness images

This step is similar in principle to the previous one. The differences are in the
fact that (i) the shaliness S is not a binary variable and (ii) the spatial structure
of the shaliness may be different between the sand and silt lithofacies; i.e. 7g);, the

semivariogram of the shaliness S, depends on the lithofacies : = 0 or 1:
1 ) .
Yspi(%,x') = 5E{(S(x|z) —mg;) (S(x'|i) — mgp) }- (3.9)

The univariate and spatial statistics of the shaliness were discussed in Section
3.2. Here the conditional mean and variance of S are computed, which uniquely de-
termines the Gaussian distribution of the shaliness at location x, using the kriging
equation. With the use of a Gaussian random generator, a local value for S is drawn
from the distribution. Defining the shaliness S through its mean mg); and its semi-

2c

variogram 7g|; for a given lithofacies 7, the conditional mean mg and variance o;

of the shaliness are given by:

N
mg; = Y aS(xi), (3.10)
=1
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N
U?S'c\i = U?su - ZalC’ovgﬁ(xl, X), (3.11)
=1

where the covariance is identified by Covg;(x;,x) = U?g“ — 7si(%s, %), and the weights

oy are obtained by solving the following system of linear equations:

N
ZOJ;COUSH(Xm, x;) = Covg|i(Xp,x), m=1,--- N, (3.12)
=1

All points [,mm =1,---, N are located within the lithofacies i.

Step 3: Computing the resistivity prior pdfs

Once lithofacies (sand or silt) at location x is identified and the corresponding
shaliness is assigned, a prior pdf for the resistivity frx)(r[/ = 4,5 = s) can be
defined through Figure 3.6a. R and S denote the space random functions (SRF's) of
the resistivity and the shaliness, respectively, and r and s denote their corresponding
realizations. Figure 3.6b illustrates the joint pdf of R and S given I = 0 (sand) and
the marginal pdfs fr(r|/ = 0) and fs(s|/ = 0). Conditioning further on S = s, leads
to fris(r|S = so,I = 0), which is the Bayesian prior. Scarcity of data led to condition
on ranges of S values rather than on a single value. Figure 3.8 shows examples of
fre) (T[] = 1,03 < 5 < 0.4), fre(r|I =1i,0.4 <5 <0.5), and frx)(r[l =1,0.5 <

s < 0.6) for i =0, 1.
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Step 4: Updating frx) (r|/ = i,5 = s) based on crosswell resistivity survey

p(x)

Defining frex)(r[l = 4,5 = s) = fp (1) for brevity and given collocated survey
resistivity p(x), the posterior pdf f7 ., (r|p) can be defined through Bayes’ rule [Box

and Tiao, 1973]:

70 (7]0) = CrL(r|p) fre) (1) (3.13)

where L(r|p) is the likelihood function and Cpg is a normalized factor defined as [Box

and Tiao, 1973]

Cr= ([ L6l o)) .14

—0o0

In general, p is defined over a support volume larger than the support volume

of r. Note that in the case of a high resolution geophysical survey, p(x) — r(x),
and Bayesian updating is unnecessary. In this case, p can simply be converted to
the hydrogeological properties of interest if a petrophysical model is available. That
conversion will be as reliable and accurate as the petrophysical model used for con-
version. This is however not a general case, and the alternative is to update fll?,(x) (r)
given p. Typically, p is defined by a block of scale ~ 3 m or greater, and the estimate
of R is expected to have a scale of ~ 1 m. The inference of the likelihood function,
L(r|p), is critical for the success of the updating and discussed in Section 3.5. Once
#(r|p) is defined, a realization of R at x can be drawn. The entire process is repeated

for all x until a complete image of the resistivity field is completed.
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An attractive property of Bayesian updating is that the posterior fg(r) is at
least as informative as fg,)(r). In the case of a totally non-informative likelihood
function, equation (3.13) yields fg (1) = fg (7). It is emphasized that the method
does not always guarantee better estimates for a couple of reasons. Firstly, the
Bayesian approach provides a pdf, not a single valued estimate. Secondly, the im-

provement achieved in the posterior pdf is dictated by the quality of external factors

such as the accuracy of the geophysical survey and the petrophysical model.

A modification of step 1 is appropriate and useful if the lithofacies images can
also be conditioned on the resistivity. As is apparent from Figure 3.6a, the lithofacies
images can be improved through the resistivity survey: sand tends to be character-
ized by high resistivity and silt by low resistivity, although there is some overlap at
midrange values. This approach calls for Bayesian updating of p¢ as well, through
the relationship

i CrL(I|p)p©, (3.15)

where L(I|p) is the likelihood function, of a similar nature to (3.13), only relating p

to I rather than R. C7 is a normalized factor similar to Cg (3.14).

3.3.2 Synthetic “True” Database

The concept outlined in Section 3.3.1 is demonstrated here using a synthetic ex-
ample, generated to simulate closely the conditions of HSU2. Figure 3.9a shows a

realization of HSU2 lithofacies conditional on the lithofacies observed at the wells.
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The field is 230 m in the horizontal direction and 17 m in the vertical direction.
Realizations of the shaliness and resistivity fields, generated based on the previously
described method, conditional on borehole data, are given in Figure 3.9b and 3.9c.

The spatial statistics used are those described in Section 3.2.

3.4 Electromagnetic Surveying

Field EM surveying is a complex mapping of the detailed, high-resolution R(x)
distribution into a low-resolution p(x) field. In reality, the geophysical response is

distorted by both data acquisition and the inversion process.

An electromagnetic survey was conducted at LLNL through polyvinyl chloride
(PVC) cased wells. Two surface to borehole profiles were measured with a surface
transmitter loop (frequency 11.3 kHz) and a vertical magnetic coil receiver placed
in well 1250. The profiles were in the region between wells 1250-1251 and 1250-
1252 shown in Figure 3.2. Seven cross-well EM data sets were collected. A vertical
magnetic coil transmitter (frequency of 9.6 kHz) was placed in well 1250 and 1251.
From well 1250, five data sets were collected with a vertical magnetic receiver placed
successively in wells 1251 through 1255. The last two data sets were collected between
wells 1251-1253 and wells 1251-1254. All data sets from the crosswell EM survey have
been processed, but results are not yet available. To explore the Bayesian updating

approach, synthetic surveys of the resistivity are simulated.
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Figure 3.9: ”True” geological sitting. (a) Sequential indicator simulation of lithofacies
conditional on borehole data.(b) Sequential Gaussian simulation of shaliness condi-
tional on borehole shaliness measurements. Darker shades represent sand (low clay
content), and brighter shades represent silt (high clay content). (¢) True resistivity
random field built by projecting the "true” shaliness field using the petrophysical
relationship given in Figure 3.6a.
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The theoretical foundation of the EM survey is based on Maxwell’s wave propa-
gation equations as given in Appendix A. These equations couple the electric field to
the magnetic one. Under reasonable approximation of low variability of the resistivity
between the sand and the silt bodies (Figure 3.6a), the wave propagation problem
can be reduced to an electric current diffusion problem. Identical problems have been
considered in fluid flow in porous media [Dagan, 1989] and flow of electric currents
[Abramovich and Indelman, 1995]. Borrowing from their results and considering the
two-dimensional survey, the electrical conductivity &, of a block which covers n, by
n, small-scale blocks (Figure 3.10), where n, is the number of blocks in z direction

and n, in the z direction, is given by the geometric mean:

1

Ky = ( Hﬁ m,m) : (3.16)

I,m=1

where r;,, are the small-scale blocks. This formula is applicable for blocks that
are large relative to the characteristic length scale of resistivity heterogeneity. In
the present case, since the characteristic length of the spatial variability is small,

geometric averaging appears to be an appropriate homogenization procedure.

1

From simple algebra, p = (HZ;”n":ZI Rl,m) e (see Appendix A). Hence for the pur-
pose of this study, the resistivity of a block detected in a survey equals the geometric
averaging of the small-scale resistivity. n, = n, = 3,6,9 will be considered. Figures
3.11a and 3.11b show results of the synthetically surveying resistivity field shown in

Figure 3.9¢ using different resolutions. As the resolution decreases, small-scale details

become obscure and fuzzy, and the range of resistivity values detected narrows.
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Kp

Figure 3.10: Upscaling small-scale block conductivities Ky, | = 1,---,ng m =
1,---,n, into survey scale block conductivity rp.

3.5 Synthetic Case Study

The cross section shown in Figure 3.3 is investigated in this case study, assuming
that Figures 3.9a to 3.9¢, which were generated conditional to the borehole data, are
the “true” images of that cross section. A geophysical survey of the same cross section
is simulated using equation (3.16). The goal of the case study is to test the capability
of the method described in Section 3.3 to reconstruct the base case’s images while

benefiting from the resistivity survey.

Typical images obtained using prior pdfs are only shown in Figures 3.12a to 3.12c.
It is noted that these images are in good agreement with the corresponding images
(Figures 3.9a to 3.9¢) only in the well-sampled areas, on the right-hand side of the
images. Figures 3.12a and 3.12c¢ will be updated following the methods outlined
in section 3.3.1. Updated images will be compared to the assumed “true” images

depicted in Figures 3.9a and 3.9c.
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(a) 3x3 Resistivity Survey [Om M

Figure 3.11: Examples of the resistivity surveys obtained by geometric averaging of
the "true” resistivity field (Figure 3.9¢) over (a) three and (b) nine small-scale blocks
in the horizontal and vertical directions.
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Figure 3.12: (a) Single realization of the lithofacies field obtained by sequential indica-
tor simulation of lithofacies conditional to borehole core data. (b) Single realization of
the shaliness field obtained by sequential Gaussian simulation of the shaliness condi-
tional to borehole shaliness measurements. (c) Single realization of the resistivity field
built by projecting the shaliness random field (Figure 3.12b) using the petrophysical
relationship (Figure 3.6a).
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3.5.1 Indicator Likelihood Functions and Lithofacies Image

Updating

Equation (3.15) requires to infer the likelihood function L(I]p). To identify L,
a “training set” is used. The idea is to identify a portion of the survey area that
will be drilled and cored post survey to yield a set of collocated measurements (p, 7).
The dimension of the training set area should be determined such that the survey
represents the entire range of conditions expected over the entire surveyed area. The
sampled area needs to be ergodic in terms of bivariate (p,¢) statistics. That usually
implies a dimension of several integral scales vertically, along cored wells. p measured
close to the wells can also be considered as located at the well itself. An alternative
that is not pursued here is to derive the likelihood function analytically, based on
upscaling rules [Copty and Rubin, 1995]. In the present application, the well-sampled
area near well 1250 (right-hand side of Figure 3.3) was set to be the “training set”,
and the much less sampled area near well 1205 (left-hand side of Figure 3.3) was set

as the “testing set”.

L(I|p) is determined for a given I =i and p = py by scanning the set of collocated
pairs (7, pp) and computing the conditional probability Prob[p = pg|l = i]. Equation
(3.15) is then used to update the lithofacies image (Figure 3.12a) using different
resistivity survey resolutions. Images of the “testing set”, obtained based on equation

(3.15) for nyn, = 3 x 3, 6 x 6 and 9 x 9 resistivity surveys, are practically of the same
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Li t hol ogy
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Figure 3.13: Posterior lithofacies image of the ”testing set” (left-hand side of Fig-
ure 3.12a, using (3.15) and 3 x 3 resistivity survey (Figure 3.11a).

quality as without updating and differ only by a fraction less than 1% from the prior
lithofacies (Figure 3.12a), even in case of high-resolution resistivity survey (3 x 3)
(Figure 3.13). This outcome is a manifestation of the effect of the homogenization,
which obscures the resistivity-lithofacies relationship. A large number of resistivity
combinations can lead to the same p and hence to a non-unique relationship between

p and the lithofacies.
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Figure 3.14: Examples of the likelihood function L(r|p) inferred from 3 x 3 resistivity
survey following (3.13).

3.5.2 Resistivity Likelihood Functions and Resistivity Image
Updating

L(r|p) of equation (3.13) is approximated here by L(r —dr < p < r+dr|p) with a

relatively small dr, due to the data scarcity. A couple of typical examples are shown

in Figure 3.14, which are likelihood functions for two ranges of resistivity [10.5, 11.5]

Qm and [17.25,19.25] Qm.

The effect of updating the resistivity based on surveys with different resolutions
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is demonstrated in Figure 3.15. It shows that the prior and posterior resistivity
pdfs at arbitrary points within the silt and sand lithofacies for various resolutions of
the resistivity survey. The maximum beneficial effect is obtained, not surprisingly,
through the high-resolution survey, but the positive impact of conditioning on p is
discernible even at the low-resolution surveys. The trend of reduction in impact with
poorer resolution is evident, and this is an outcome of the diffuse and non-informative
nature of the likelihood function as the discrepancy between the survey scale and the

desired resolution scale increases.

Note that conditioning R on p does not imply that the randomly generated values
will average exactly to yield p unless special measures are taken. To honor precisely
the surveyed value p, a constraint on the generated value is introduced so that the
generated r values over any volume corresponding to p will average exactly to yield

p. The procedure is outlined in Appendix B.

Figures 3.16a and 3.16b depict the updated resistivity fields for n,n, = 3 x 3 and
9 x 9 resistivity survey. These figures should be compared with the “true” image
(Figure 3.9c¢, left part) and with the image generated based on the prior pdfs (Figure
3.11c). It is obvious that the resistivity surveys have a significant positive impact,

particularly at the high resolution.
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Figure 3.15: Effect of the resolution of the n,n, resistivity survey on the posterior
pdf’s (prior pdf’s are also plotted). The bias in the variance and the mean decreases
with the increase of the resolution of resistivity survey (from 12 x 12,9 x 9, 6 x 6, to
3 x 3). The black box denotes ”true” resistivity values. Prior and posterior pdf’s for

shaliness between 0.1 and 0.2 in silt (left, / = 1), and sand (right, I = 0).
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Figure 3.16: Posterior resistivity images of the testing set (left side of Figure 3.12c,
using (3.13) and the resistivity surveys: (a) 3 x 3 resistivity survey (Figure 3.11a) and
the posterior lithofacies (Figure 3.13), and (b) 9 x 9 resistivity survey (Figure 3.11c)
and the posterior lithofacies (Figure 3.13).
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3.5.3 Effectiveness of the Bayesian Updating

To evaluate the effectiveness of the updating procedure, the following statistic is

analyzed:

e —m] Uy <1, successeful updating

Uy (3.17)

B Ire = otherwise, unsucesseful,
where k£ is a running index over all the points outside the wells, r is the actual
resistivity (Figure 3.9¢), m” is the mean of the posterior pdf frx) (x), and m' the mean
of the prior pdf fll?,(x) (x). The ratio U compares the performance of the posterior and
the prior pdfs. U smaller than 1 indicates a successful updating procedure; otherwise,
it is a diffuse likelihood and hence a non-informative survey. Figure 3.17 depicts the
variation of U, as a function of the survey resolution. For completeness, statistics
were also computed for resistivity surveys of 2 x 2 and 12 x 12 block resolution. It has

been found that U decreases with decrease in resolution, in line with Figures 3.15a

and 3.15b.

3.6 Summary

This study investigated some problems associated with combining resistivity to-
mography and resistivity well logging. The focus on resistivity rather than on hydro-
geological properties stems from the observation that properties such as permeability

and porosity can be derived from the resistivity based on theoretical or empirical,
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Figure 3.17: Percentage of number of successes (equation (3.17)) of the Bayesian
updating approach for different survey resolutions and different errors in the surveys.
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site-specific models. The study was conducted by considering conditions as realistic
as possible, and the real-life data collected at the LLNL site and the synthetic data

along some cross sections were analyzed.

A Bayesian model was used for data assimilation in this study, and the method
allows for conditioning on what is clearly a set of complex and nonlinear petrophys-
ical models relating between different geological attributes. This method comprises
several steps, each of which intended to explore, model and utilize the aspects of
the data that are needed for relating between the tomographic data and the well
logs. Although such method is universal in all its components, the complexity of the

geophysical surveying and interpretation makes several of its aspects site-specific.

This study employed several relationships between induction resistivity, lithofa-
cies, shaliness and tomographic resistivity. The relationships reflect, to a large degree,
properties that are well understood and quite general in terms of trends. However,
these relationships may not be transported to other sites; in this sense, the method
used in the study does not replace nor alleviate the tedious task of data exploration.
It is helpful at the data exploration stage to identify “common-factors”: the attributes
or parameters that can be used for projecting areally the well log data and act as
surrogates for hydrogeological and geophysical properties. At the LLNL site, that key
element is the shaliness, due to its well-defined spatial structure and its sensitivity to
resistivity. Once the “common factors” are identified, the Bayesian model becomes

the key for data assimilation at this stage.
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The Bayesian approach used in the study clearly can be changed and improved.
The pdfs in this application follow Gaussian models. One may argue that pdfs should
be accurate reflections of data and not models or conjectures. This issue is particu-
larly significant for the tails of the pdfs. However, modeling decision here does not
impinge on the fundamentals of the approach, which by no means require Gaussian
pdfs [Woodbury and Ulrych, 1993]. Another issue concerns the development of the
petrophysical models. The search leading to Figure 3.6a was based on visual inspec-
tion. Nevertheless, there is clearly a need to implement a more systematic approach,
especially given that the relationship can be more complex in terms of the number of

clusters and the number of the parameters involved.

Under the conditions explored here, a significant reduction of the estimation accu-
racy was observed in the presence of realistic error levels in the geophysical surveys.
The benefits in estimating high-resolution subsurface resistivity are more significant
than those gained in estimating lithofacies given a low-resolution resistivity survey.
The LLNL data showed good correlation between resistivity and lithofacies at the
small scale, but the correlation deteriorates at lower resolution. This observation is
supported by the fact that the resistivity surveys were non-informative for updat-
ing the lithofacies images. Resistivity-shaliness-lithofacies relations may show perfect
correlation at a fine scale but can appear to have large scatter when using a larger

observation scale.
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Chapter 4

Estimating Lithofacies from Borehole and
Crosshole Geophysical Data Using the
Bayesian Model Coupled with a Fuzzy

Neural Network

4.1 Introduction

Heterogeneity of lithofacies has an important effect on the determination of hydro-
geological and geochemical parameters in flow and contaminant transport. Modeling
of this heterogeneity requires the joint use of different sources of information, espe-

cially less-invasive and cost-effective geophysical data.

Borehole geophysical data have been used for decades to map spatial variability
of lithofacies [Doveton, 1986]. The main focus of the mapping is on the inference of
the cross correlation between the lithofacies and the multiple geophysical attributes.
Many methods have been developed for the purpose, such as graphical models [Dove-

ton, 1986], multivariate analysis [Delfiner et al., 1987], neural networks [Rogers et
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al., 1992], and fuzzy neural networks [Chang et al., 1997]. Among those methods,
fuzzy neural networks have been shown most attractive because they take advantages
of neural networks in fitting nonlinear functions and fuzzy logic in including human
knowledge into the fitting. The methods, however, are ignorant of spatial correlation
of lithofacies, which has been shown very useful in many situations [Deutsch and

Journel, 1998].

Surface and crosshole geophysical data have also been used to improve lithofacies
estimation, such as surface or crosshole seismic data [Lortzer and Berkhout, 1992;
Copty and Rubin, 1995; Hyndman and Gorelick, 1996], surface gravity and magnetic
data [Bosch, 1999; Bosch et al., 2001], and surface electrical resistivity data [Salem,
2001]. To jointly use geophysical data collected from surface or crosshole surveys and
from borehole logging, several problems exist: (1) the scale disparity between surface
or crosshole surveys and borehole logging [Ezzedine et al., 1999], (2) spatial correlation
of lithofacies, and (3) cross correlation between lithofacies and geophysical attributes.
A simple yet practical method to solve the problems is geostatistical indicator cok-
riging [Rosenbaum et al., 1997; Deutsch and Journel, 1998]. This method, however,
is limited as the cross correlation between lithofacies and geophysical attributes is

highly nonlinear.

Bayesian methods have been used for many years to incorporate geophysical data
into lithofacies estimation [Copty and Rubin, 1995]. The methods provide a general

framework for data assimilation and allow various types of information to be inte-
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grated in a hierarchical manner [Boz and Tiao, 1973; Bernardo et al., 1994]. Using
a carefully built Bayesian model, surface or crosshole geophysical data as well as
borehole lithofacies and geophysical logs can be jointly used to estimate lithofacies,
provided that the relations between the various types of information are available.
The parameters in the Bayesian models can be identified using the maximum of
a-posteriori probability density function (MAP) under some conditions [Lortzer and
Berkhout, 1992], but sampling-based methods, such as the Markov Chain Monto Carlo
(MCMC) method, are needed for more general situations [Gilks et al., 1998; Bosch,
1999; Bosch et al., 2001]. A key focus of the Bayesian model is on the inference of the
cross correlation between lithofacies and geophysical attributes. Since the relation is
often nonlinear, site-specific, and difficult to obtain, a data-driven model is developed
in this study to infer the cross correlation directly from training data sets, without

making any assumption about the form of the function.

This chapter develops a Bayesian model coupled with a fuzzy neural network
(BFNN) for lithofacies estimation, using spatial correlation of the lithofacies as well as
the nonlinear cross correlation between the lithofacies and the geophysical attributes.
Section 4.2 describes the Bayesian model, and section 4.3 and 4.4 present two case

studies using the model. Discussion is given in sections 4.5.
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4.2 Bayesian Model Coupled with a Fuzzy Neural

Network

This section describes the Bayesian model coupled with a fuzzy neural network
for lithofacies estimation. A general Bayesian framework for combining borehole and
crosshole geophysical data is given first, and then indicator kriging for estimating the
prior and the fuzzy neural network for inferring the likelihood function are introduced.

The focus is on the inference of the likelihood function using the fuzzy neural network.

4.2.1 Bayesian Framework

The developed Bayesian model is based on a typical situation of subsurface char-
acterization, such as at the Lawrence Livemore National Laboratory (LLNL) site
[Ezzedine et al., 1999] and at the Oyster site [Chen et al., 2001]. Suppose lithofacies
at any location x needs to be estimated, given lithofacies measurements at location x;,
i€ A={1,2,---,n}, and collocated geophysical data g;(x), g2(x), - - -, g:(x), where ¢
is the total number of geophysical attributes. The geophysical data can be obtained
from crosshole tomography surveys or estimated from intensive borehole geophysical
measurements using kriging. Let Z(x) be a discrete random variable taking num-
ber 1,2,---, or, q, where ¢ is the total number of possible lithofacies at a site. Let
z(x;) be the lithofacies measurement, a number between 1 and ¢, at location x;,

i € A. The conditional probability of the kth lithofacies occurring at location x can
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be determined by the following Bayesian formula [Bernardo and Smith, 1994],

P(Z(x) = klg1(x), g2(x), - -+, gu(x), 2(x;),7 € A) =
Cf(g1(x), 92(x), -, ge(X)|Z(x) = k, 2(x;),i € A) - (4.1)

P(Z(x) = klz(xi),i € A),

where C' is a normalizing constant and f is a joint conditional density function,
referred to as a likelihood function. The most likely estimate of lithofacies at location

x is the one that maximizes the conditional probability.

The previous Bayesian model can be simplified under certain conditions. Consider
the Markov assumption that cross correlation between lithofacies and geophysical at-
tributes at location x does not depend on lithofacies measurements at other locations,
2(x;), 1 € A, can be dropped from the likelihood function. Consequently, the Bayesian

formula becomes

Bpost(Z(x) = k) = [Cf(91(%), 92(x), - - -, 9:(%)|Z (%) = k)] - Pprior(Z(x) = k), (4.2)

where Pyq(Z(x) = k) = P(Z(x) = k|lg1(x), 92(x), - - -, gu(x), 2(x;), 7 € A) referred to
as posterior probability, and Py, (Z(x) = k) = P(Z(x) = k|z(x;), 1 € A) referred to

as prior probability.

4.2.2 Prior Estimate

The prior probability is estimated only from lithofacies measurements z(x;),7 € A,

using indicator kriging [Rosenbaum et al., 1997; Deutsch and Journel, 1998]. Let I (x)
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be an indicator random variable defined by

1 ifZ(x)=k
I (x) = : (4.3)

0 otherwise
and therefore {Z(x) = k} is equivalent to {I;(x) = 1}. Let p, be the unconditional
probability of the kth lithofacies occurring at location x. The conditional probability

is thus given by

Prrior(Z(x) = k) = pr. + D Xi(x) (Ir(xi) — pr) (4.4)
€A

and

Z)\ C[ Xz,X]) = C[(X,Xj), ] € A,

1€EA
where C/(x;, x;) is the covariance of the indicator variables at location x; and x;, and

Ai(x), i € A, are the unknown parameters.

The indicator kriging takes advantages of spatial correlation of lithofacies. As
the distances between location x and x;,7 € A, become large, however, the condi-
tional probability will be close to the unconditional probability pg, and lithofacies

measurements at boreholes will not influence lithofacies estimation at location x.

4.2.3 Likelihood Function

The likelihood function in Equation 4.2 is a connection between lithofacies and

geophysical attributes, and it can be inferred from both lithofacies and geophysical
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data. The inference, however, is very challenging because cross correlation between
the lithofacies and geophysical attributes is often nonlinear and site-specific. Many
previous applications of Bayesian methods follow a forward approach | Kitanidis, 1986;
Copty and Rubin, 1995]. They first assumed the form of the likelihood function and
then estimated the parameters associated with the form. This approach is straight-
forward yet efficient in certain circumstances, but giving the form of the likelihood
function is very difficult, especially as data quality is low and the cross correlation is
complicated. This study follows another line and uses a fuzzy neural network as a

computing model to learn the likelihood function directly from a training data set.

The paradigm of the computing model is shown in Figure 4.1, where h(x,8)
is the function determined by the neural network structure and @ is a parameter
vector associated with the structure. Let (g1(x;), g2(x;), -+ -, 9:(x;), C f(91(x:), g2(x:),
o qil(x3) | Z(xi) = k)), i € A, be a training data set. Parameter vector @ can be

estimated by minimizing the following objective function:

> [h(xi,8) — log(C f(g1(xi), g2(xi), -+, 9u(x0) | Z(3:) = )] (4.5)

icA
Fitting log(C'f) instead of C'f is because the log value of C'f has a smaller range that

leads to a more efficient computation.
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91(x), 92(x), -+, (%)) ——» Fuzzy Neural Network |— h(x, )

Figure 4.1: Computing model of the likelihood function

4.2.4 Structure of the Fuzzy Neural Network

The fuzzy neural network used in the study is similar to the one given by Takag:
and Sugeno [1985] and Jang [1993], which consists of several fuzzy inference rules.
To simplify illustration of the system, only two types of geophysical attributes are
considered; the model, however, can be directly applied to a more general case. Let
g1(x) and go(x) be geophysical data at location x. An example of the system with

two fuzzy rules is given by

Rule-1: If g;(x) is A; and ¢5(x) is By, then the output of the fuzzy rule is oy,

Rule-2: If g;(x) is Ay and ¢5(x) is By, then the output of the fuzzy rule is o0,.

A; and B; (i =1,2) in the premises of those rules are linguistic labels, such as small
and large, or fuzzy sets. A fuzzy set is a class of objects with a continuum of grades
of membership; such a set is characterized by a membership function that assigns
to each object a grade of membership ranging between zero and one [Zadeh. 1965].

Fuzzy sets and their linguistic labels are often used interchangeably in literatures, and
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this allows interpreting fuzzy inference rules intuitively. o, and o5 in the consequences
of the rules are constants in the study, but they can be linear functions of input ¢ (x)

and ¢y(x), as given by Takagi and Sugeno [1985].

Figure 4.2 shows the fuzzy reasoning of the fuzzy neural network. For given
geophysical data g,(x) and g»(x) at location x, the grades of membership of ¢, (x) in
fuzzy sets A; and A, i.e. pa,[g1(x)] and pa,[g1(x)], and the grades of membership
of go(x) in fuzzy sets By and By, i.e. up, [g2(x)] and pp,[g2(x)] are calculated. Using
these membership values, the weights of rule-1 and rule-2 for the inference can be

determined by following

wi(x) = pag1(x)] - pslg2(x)],  i=1,2. (4.6)

Other methods can also be used to compute the weights, such as minimum or mawi-
mum, but the current method is most computationally efficient | Takagi and Sugeno,
1985]. The final result of this inference is a weighted linear combination of the outputs

of all the fuzzy rules as given by

w1 (x)01 + we(X)0o
w1 (x) + we(x)

h(x,0) = (4.7)

where 0 is a parameter vector and h(x, @) is a function of both location x and pa-
rameter 6.

Figure 4.3 shows the structure of the fuzzy neural network as given by [Jang, 1993].

The input to each node in layer 1 is ¢g;(x) or g2(x); the output is the corresponding
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Rule-1:

wy(x) =
pay [91(x)] - s, [g2(x)]

Rule-2:

wo(x) =
a5 [91(x)] - 1B, [g2(x)]

Figure 4.2: Fuzzy reasoning of the fuzzy neural network

grade of membership pa,[g1(x)] or pp,[g2(x)] as given by

palgi(x)] = exp (— (M)j : (4.8)

i1

o] = exp (— (%)) ,

where i = 1,2, ¢;; and ¢;5 are the centers of fuzzy sets A; and B;, and o;; and o;5 are
their corresponding bases. The outputs of the node in layer 2 and 3 are the weights
w;(x), i = 1,2, and their relative weights w;(x) = w;(x)/(wi(x) + w(x)), i = 1,2,
respectively. The input to each node in layer 4 is the relative weight w;(x) and the
consequences 0;, ¢ = 1,2; the output is the product of its corresponding input. The

node in the last hidden layer is the summation of all incoming signals to the node as
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Layer 1
A Layer 2 Layer 3 Layer 4 Layer 5
02
gi1(x !
w1 (X)01
h(x,0)
w9 (X)02
ga(x Ot
Figure 4.3: Structure of the fuzzy neural network
given by
h(X, 9) = w; (X)01 + U72(X)02, (49)

which is equivalent to Equation 4.7.

This system seems very simple and arbitrary, but it has been demonstrated to
be very efficient in fitting multivariate nonlinear functions by Tukagi and Sugeno
[1985], Horikawa et al [1991], and Jang [1993]. Actually, this system can be used
to approximate any continuous nonlinear function defined on a bounded domain as

shown by Jang [1993] and Rojas [1996].
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4.2.5 Learning Algorithm of the Fuzzy Neural Network

The learning of the fuzzy neural network includes the determination of the number
of fuzzy inference rules and the identification of the parameters associated with the

rules from a given training data set.

Structure Identification

Structure identification is performed using fuzzy c-mean (FCM) cluster analysis.
The number of fuzzy rules and the initial values of the centers and bases of each
fuzzy set in the premises of those rules are determined by identifying possible patterns

inherent in the input data.

The algorithm used in the study was given by Bezdek [1981], which is a very
efficient iterative procedure. Let (g1(x;), 92(x;)), 7 € A, be input data, which can be
divided into m fuzzy clusters. Let ¢; = (c;1, ci0)T, i = 1,2,--+,m, be the centers of
the fuzzy sets, y; = (g1(x;), 92(x;))" be the jth input data, and u;; be the grade of

membership of y; in the sth fuzzy cluster. The algorithm becomes:
1. Randomly assign the initial grades of membership u;; € [0,1] and Y7, u;; = 1.

2. Compute the center of each fuzzy cluster using

2
_ Djea Uiy

ci = , 1=1,2,---,m. (4.10)
' ZjEAuzzj

3. Update the grades of membership using the newly obtained centers c;, 1 =

1,2,' e, M. Let dij :H Ci—Yy, || and dkj :H C. Y, || If dij = 0, Ui; = 1 and
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uy; = 0 for k # 4; otherwise,

1/d;;

= - | 4.11
ST 1/ E, (4.11)

U'ij

4. Compare the newly updated grades of membership with the old ones. If they

are close to each other, stop the iteration; otherwise, go back to step 2.

The number of fuzzy rules is determined by considering both compactness and
separation of fuzzy clusters [Xie and Beni, 1991]. The compactness of the clusters is

defined as the weighted squared distance as given by

m
J(er, ez, esem) =20 > ugy e —y; || (4.12)

i=1jeA
The separation of the clusters is defined as the minimum distance between the centers

of each pair of the clusters as follows
dmm:mIHH CZ'—Cj ||, i,j:1,2,---,m. (413)
i#]

Both the compactness and the separation decrease with the increasing of the number
of clusters. For a good cluster analysis, data points within clusters are expected to
be compact (small compactness), whereas the cluster centers are expected to be well
separate (large separation). Consequently, the number of clusters can be determined

by minimizing the following function:

J(ci, ¢, Cm) /0
d? ’

min

S =

(4.14)

where n is the total number of pairs in the input data.
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Parameter Identification

Parameter identification plays an important role in the learning of the fuzzy neural
network. The consequence of each rule and the centers and bases of the fuzzy sets in
the premises of the rules, specifically o;, ¢;1, ¢;2, 051 and ;5 for @ = 1,2, are estimated

from a giving training data set.

The training data set used in the study originally is in the form of (g1(x;), g2(x;),
z(x;)), i € A, where g1(x;), g2(x;) and z(x;) are geophysical data and lithofacies at
location x; and A is an index set as given early in the chapter. Since the fuzzy neural
network is used to approximate log likelihood rather than lithofacies in this study,
transformation from lithofacies measurement z(x;) into the corresponding log likeli-
hood is needed. Let I(x;) = log|C f(g1(x;), g2(xi)|Z(x;) = k)]. Using Equation 4.2,

the log likelihood is given by

[(xi) = 10g[Pposi(Z (%) = k)] = 1og[Pprior (Z(x:) = k)] (4.15)

The prior probability P, (Z(x;) = k) is estimated from lithofacies measurements
at other wells. To avoid the prior probability being zero, let Pp.ior(Z(x;) = k) =,
where € is a small value between 0.01 and 0.05, if P, (Z(x;) = k) < €. Likewise,
assigh P (Z(x;) = k) =1 —€if 2(x;) = k, and P, (Z(x;) = k) = € otherwise. The
value of € seems to be arbitrary, but the estimating results are not sensitive to the

choice of e.

Several methods have been used to identify those parameters in the fuzzy neural
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network. Horikawa et al. [1991] considered the system as a general neural network
and used the back-propagation method. In light of the fact h(x, @) in Equation 4.7 is
a linear function of 0; and oy if other parameters are fixed, Takagi and Sugeno [1985],
Jang [1991] and Nikraviesh [1998] employed hybrid learning methods. They used the
least squares method to estimate o; and 0, and other nonlinear optimization methods

to estimate Ci1,Ci2, 041 and 0;2 for ¢ = 1, 2.

The learning algorithm is an iterative process as shown in Figure 4.4. Let o =
(01,00)", @ = (c11, €12, Co1, Con, 011, 012, 091, 092) 7, and RSS be the residual sum of

squares as given below:

RSS(0,a) = [h(x;,0,a) — 1(x;)]* (4.16)

icA
Firstly, parameter o), where the superscript denotes the number of iteration, is es-
timated using the least squares method, given the initial value a®) obtained from
previous structure identification. Secondly, parameter a(!) is estimated using a non-
linear optimization method, given the newly updated o"). Finally, the most recently
obtained residual sum of squares (RSS) is compared to the previous one. If they are

very close, the iteration is terminated; otherwise, it is not, as shown in Figure 4.4.

The least squares method used in the hybrid learning is straightforward. Given

parameter «, relative weights w; (x;) and ws(x;) for each input (g1(x;), g2(x;)), i € A,
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Get initial a(%) using the
fuzzy c-mean method

<
<

Y

Estimate 0o®) given a/(*—1)
using the least squares
method

Y

Estimate a(¥) given o%)
using the Levenberg-
Marquardt method

Compare RSS(0*), a(k))
with RSS(oF—1 alk—1))
Are they close?

No

Yes

Y

Stop

Figure 4.4: Learning procedure of the fuzzy neural network
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[ (Xl) Wy (Xl)
(g (Xg) Wy (Xg)
(4.17)
’U71 (Xn) ’U72 (Xn)
Let 1 = (I(xy),[(x2), - -,1(x,))". The relation between the consequence of each fuzzy

rule and the output of the system is given by wo =1, and the least squares estimate

of parameter o is given by (w’w)~'w’1 [Stone, 1995].

The Levenberg-Marquardt algorithm as a nonlinear optimization method is used

to estimate parameter « in the study for a given parameter o. It is a revised Gaussian-

Newton method and requires iteratively evaluating residuals e = (ey, ez, -+, €,)",

where e; = h(x;,0, @)

1980]
Oey Oey Oey Oey  Oey  Oey  Oey  Oey
Oc11 Ociz Ocar Oczp Oo1r Oora 0oz 0oz
Oey  Oex  Oey  Oey  Oey  Oey  Oey  Depy
Oc11  Oci2  Oc21 Oczz Oo11 Ooiz  Odoz1 Oo22
Oen Oen  Oen  Oden  Oen  Oen  Oen  Oen
| Oci1 Ociz2 Ocar Oczz Oo11 o1z Oo21 Doz
where
oe; [9s(xi) — cis]
5 = 2w(x;)[or — h(x;,0, )] - ——F—,
Cks O.k;s
2
de; - _ h [QS(Xi) - CkS]
P - 2wk(xz)[0k - (Xi7 o, a)] ' 3 )
Oks Oks

T

—I(x;), i € A, and Jacobian matrix J given by [McKeown,



113

which are obtained using the chain rule of differentiation and the membership func-

tions given in Equation 4.8. The detailed algorithm is given below

0

1. Compute residual e and Jacobian matrix J for given parameters a(®) and set

k=0.
2. Check gradient J”e. If |J”e| < ¢, stop; otherwise, go to next step.

3. For a given positive value y, compute a'®) = a*=Y — (J'J + pI)~'J"e and
check whether RSS(0o®), a®) < RSS(o®, a*=1). If it does, go to next stop;

otherwise increase i value and repeat step 3 until RSS is reduced.

4. Check |a® — a*=V| < €. If it does, stop; otherwise, set k=k+1 and repeat

step 1.

4.3 Case Study 1

This case study demonstrates the ability of the Bayesian model coupled with a
fuzzy neural network to combine borehole and crosshole data for lithofacies estima-
tion, using a synthetic data set generated from field measurements at the Lawrence

Livemore National Laboratory (LLNL) site.
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Table 4.1: Spatial structures of lithofacies and geophysical data

Lithofacies Gamma-ray | Resistivity

Sand Silt (Shaliness) (Qm)
Proportion 0.52 0.48 N/A N/A
Horizontal Range(m) 30.0 30.0 25.0 +00
Vertical Range(m) 1.50 1.50 2.50 +00
Nugget 0.0 0.0 0.011 o
Sill 0.25 0.25 0.040 o2
Models Exponential | Exponential | Gaussian N/A

4.3.1 Synthetic Data

This study focuses on a small portion of the LLNL site shown in Figure 4.5. Among
many geophysical logs collected at the site, gamma-ray and electrical resistivity logs
have been found to be most informative for lithofacies identification. Table 4.1 sum-
marizes the spatial structures of lithofacies, gamma-ray and resistivity, inferred from
borehole measurements within hydrostratigraphic unit 2 (HSU2). The gamma-ray
was converted into shaliness to remove inconsistencies associated with data acqui-
sition [Doveton, 1986] using the method described by Ezzedine et al. [1999]. Both
lithofacies and gamma-ray shaliness have large spatial correlations compared to re-

sistivity, which is spatially uncorrelated along both vertical and horizontal directions.

Synthetic data are generated along the profile from w1205 to w1251, shown as
a solid line in Figure 4.5, using the parameters listed in Table 4.1. Firstly, a two-

dimensional lithofacies field is generated, which are conditioned to lithofacies measure-
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Figure 4.5: Schematic map of the LLNL site. The circles denote wellbores, and the
solid lines denote the profile along which the synthetic data are generated.

ments at the wellbores, using the sequential indicator simulation method. Secondly,
a two-dimensional gamma-ray shaliness field is generated, which are conditioned to
the previously generated collocated lithofacies as well as gamma-ray shaliness at the
wellbores, using the sequential Gaussian simulation method [Deutsch and Journel,
1998]. Finally, a two-dimensional resistivity field along the same profile is generated,
which are only conditioned to collocated lithofacies and gamma-ray shaliness, not

resistivity at the wellbores.

The previously generated data are divided into two parts, one for training and
the other for testing. The training set is constructed by randomly selecting eight

wellbores along the lateral direction as shown in Figure 4.6, which mimic boreholes
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Figure 4.6: (a) Lithofacies field with silt (black) and sand (white); (b) Gamma-ray
shaliness field with values between 0 (black) and 1 (white); (c¢) Electrical resistivity
field with values between 5Qm (black) and 30Q2m (white).
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in real situations, and the testing set consists of the remaining of the synthetic data.
Figure 4.7 compares the normalized indicator experimental variograms, shown as the
dashed lines with circles and inferred from the data at the eight wellbores, with their
corresponding theoretical ones, shown as the solid lines and used for generating the
synthetic lithofacies field. The consistency between the experimental and theoretical
variograms confirms that the generated lithofacies field is a realization of the random
field with the spatial structure given in Table 4.1. Figure 4.8 shows the scatter-plot of
gamma-ray shaliness versus resistivity using the data at the eight wellbores. It is clear
that the cross correlation between gamma-ray shaliness and resistivity is nonlinear,

non-unique and of a considerable uncertainty.

4.3.2 Approach

The advantages of using the BFNN model for lithofacies estimation are demon-
strated by comparing it with several other models commonly used in site character-
ization. Each model is first trained using the data at the eight wellbores and then
the trained model is used to estimate lithofacies at any location in crosshole areas.
The estimated results are compared with their corresponding true values and the
total number of misclassification is counted in terms of the minimum distances be-
tween the testing locations and the locations whose measurements have been used
for estimating the current lithofacies. From the relations between the percentages

of misclassification and the minimum distances, the efficiency of each model and the
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generating the synthetic data.
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effects of the spatial correlation can be evaluated.

The models used for comparison include indicator kriging, indicator cokriging, and
the fuzzy neural network without considering spatial correlation of lithofacies, which
is referred to as FNN later in the chapter. The indicator kriging has been described
in section 4.2.2, and the fuzzy neural network without considering spatial correlation
is similar to the one given in the previous section, except that the output of the fuzzy

neural network is the conditional probability rather than the log likelihood.

The indicator cokriging is similar to the one given by Almeida and Journel [1994],
where only collocated geophysical data are used. Prior to using the model, resistivity
data need to be normalized to a range between 0 and 1 by first subtracting their min-
imum value and then dividing by their range. Let g;(x) be the gamma-ray shaliness
and go(x) be the normalized resistivity at location x. The conditional probability of

the kth lithofacies occurring at location x is given by

P(Z(x) = klg1(x), 92(x)) = pe + 2 M%) (Te (i) — i)+
+51(%)(g1(x) — m1) + 52(x)(92(x) — m2), (4.18)

and

Do) pr(xi, x5) + s1(%) pro1 (%, X)) + 52(X) prge(x,%5) = pr(x,%;), j €A,
€A

D Ai(X)prg1 (%, %5) 4 51(X)pg1 + 52(X)pgrg2 = Prg1,
€A

D Ai(X)prg2 (%, %5) 4 51(X) pgrge + 52(X)pg2 = prga,
€A
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where my and msy are the means of the gamma-ray shaliness and the normalized
resistivity. pr, pg1 and pg in the equations are the correlation coefficients of the
indicator variable, the gamma-ray shaliness and the resistivity, respectively; prg1,
P1g2, Pgig2 are the cross correlation coefficients between the indicator variable and the

geophysical data, g;(x) and go(x).

4.3.3 Results

Figure 4.9 shows the percentage changes of misclassification with the increasing of
the minimum distances between the testing and the measurement locations. In terms
of the changes, the BENN model has several advantages over other models. For the
FNN model, the percentages of misclassification does not depend on the minimum
distances, and lithofacies at any location is estimated only from the corresponding
collocated geophysical data. Although the method is as efficient as the BENN model
when the testing locations are far away from the measurement locations, it is limited
when the testing locations are close to the measurement locations. In the case, the
BFNN model takes advantages of using spatial correlation of lithofacies and reduces

the percentages of misclassification significantly.

For the indicator kriging, the percentages of misclassification increase with the
increasing of the minimum distances as shown in Figure 4.9. As the distances become
large, the lithofacies measurements collected from the wellbores have a weak influence

on lithofacies estimation. As a result, the percentages of misclassification tend to a
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constant value determined by the unconditional probability of each lithofacies. The
BFNN model in the case adds geophysical information to the estimation that leads

to a considerable reduction in percentages of misclassification.

The indicator cokriging seems to have a similar performance to the BENN model
in terms of the percentages of misclassification, as shown in Figure 4.9, but this is not a
general case. The indicator cokriging, as given in Equation 4.18, is a linear prediction
method that relies on correlation and cross correlation coefficients. In this case study,
there are only two lithofacies, and the nonlinearity of the cross correlation between the
geophysical attributes and lithofacies is not very high. The advantages of using the
BFNN model are therefore not obvious compared to the indicator cokriging. When
the nonlinearity of the cross correlation increases, however, the indicator cokriging
will not be as efficient as the BEFNN model, which will be shown in the next case

study.

4.4 Case Study 2

The second case study demonstrates the effect of the nonlinear cross correlation
between lithofacies and geophysical attributes on the performances of the BFNN
model and the indicator cokriging using synthetic data sets. Since the nonlinearity of
the cross correlation usually increases with the increasing of the number of lithofacies,

the BENN model will be compared with the indicator cokriging using the synthetic
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Figure 4.9: Comparison of misclassification using the synthetic data set, where I =10
m is the integral length of sand.
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data with two, three, or four lithofacies.

4.4.1 Synthetic Data

Synthetic data for the case study include three lithofacies fields, shown in Fig-
ure 4.10, and geophysical data along several wellbores, shown as solid lines in the
same figure. Each field is generated using the indicator sequential simulation method
[Deutsch and Journel, 1998] and has a size of 120 mx40 m. The theoretical indicator
variograms of different lithofacies used for generating the random fields are the same,
which is the exponential model with an integral length of 10 m along the lateral

direction and 1 m along the vertical direction.

The hypothetical wellbores were obtained by evenly sampling the previously gen-
erated lithofacies fields at 20 m intervals. Along each of the wellbores, electrical
resistivity and seismic velocity are randomly generated using the Gaussian random
generator. The means and standard deviations of the random generators are deter-
mined according to the collocated lithofacies and the data given in Table 4.2. The
mean values of resistivity in the table were obtained from resistivity logs collected from
w1250 at the LLNL site, and the mean values of seismic velocity were chosen based on
published parameter ranges for unconsolidated saturated sediments |[Lankston, 1990;
Hyndman et al., 1994]. The complexity of the cross correlation can be changed by
adjusting the standard deviations of those data. Figure 4.11 shows the cross plots

of the synthetic data at the five wellbores generated using the parameters given in
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Figure 4.10: Lithofacies fields (a) with silt and silty-sand, (b) with silt, silty-sand and

sand, and (c) with silt, silty-sand, sand and gravel.
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Table 4.2: Means and standard deviations of geophysical data for each lithofacies

Lithology Resistivity (2m) Seismic Velocity (m/s)
mean Standard Deviation | mean Standard Deviation

Silt 10.43 1.23 1520 130.0

Silty-Sand | 12.89 2.10 1780 105.0

Sand 18.81 2.90 1830 105.0

Gravel 25.65 1.42 1620 105.0

Table 4.2. It is clear that the nonlinearity of the cross correlation increases as the

number of lithofacies increases.

4.4.2 Approach

The approach used in the case study is similar to the one used by Chen et al.
[2001]. Each of the five wellbores is in turn to be considered as a testing well and the
corresponding other four wellbores are taken as a training set. The data at the training
set are first used to train the BENN model and the indicator cokriging, and then the
trained models are used to estimate lithofacies at each testing location. The estimated
values are finally compared with the corresponding true values. The performance of
each model is evaluated by analyzing the percentages of misclassification, similar to

the previous case study.
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4.4.3 Results

Table 4.3 is a summary of percentages of misclassification for each data set shown
in Figure 4.11. Although the number of testing wells is only five, the effects of
nonlinearity on the reduction in percentages of misclassification are observed from
Table 4.3. For the lithofacies field with two lithofacies, the nonlinearity of the cross
correlation is not high, and the difference in percentages of misclassification between
the BFNN model and the indicator cokriging is not significant. That is consistent with
the previous case study. However, as the number of lithofacies or the nonlinearity
of the cross correlation increases, the differences between the two models become
evident. Similar results can also be obtained if the interval between the sampled

wellbores are reduced.

4.5 Discussion

A Bayesian model coupled with a fuzzy neural network (BFNN) was developed to
estimate lithofacies in this chapter using lithofacies core measurements and geophysi-
cal data. The prior probability is estimated from lithofacies measurements only using
indicator kriging based on spatial correlation of the lithofacies, whereas the posterior
probability is updated from the prior using geophysical data through the likelihood
function. The efficiency of the model in combining the lithofacies measurements and

the geophysical data was demonstrated using two synthetic data sets.



Table 4.3: Percentages of misclassification
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Testing Well Kriging (%) Cokriging (%) BFNN (%)
Pattern-1
Well-1 54 5 7
Well-2 39 7 5
Well-3 39 5 2
Well-4 36 2 0
Well-5 46 12 5)
Average 43 6 4
Standard Deviation 7 6 4
Pattern-2
Well-1 63 20 24
Well-2 56 22 7
Well-3 39 12 10
Well-4 46 10 7
Well-5 49 29 15
Average 51 19 13
Standard Deviation 9 8 7
Pattern-3
Well-1 76 37 24
Well-2 66 39 10
Well-3 68 24 22
Well-4 71 34 24
Well-5 71 41 17
Average 70 35 20
Standard Deviation 4 7 6
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The BFNN is the most effective method among indicator kriging, indicator cok-
riging and fuzzy neural networks without using spatial correlation (FNN). Each of
the alternatives can be considered as a special case of the BENN in different situa-
tions. The BFNN is similar to the indicator kriging when estimating locations are
close to boreholes, similar to the FNN when estimating locations are far away from
the boreholes, and similar to the indicator cokriging when the number of lithofacies
is less than three or the nomnlinearity of cross correlation is not high. The BFNN
is particularly useful for cases where the nonlinearity of cross correlation between
lithofacies and geophysical attributes is very high and estimating locations are within
two or three integral lengths of lithofacies. That is a typical situation in subsurface
characterization for the purpose of environmental remediation, such as at the bacte-

rial transport site in Oyster (VA) and at the geochemical transport site in Livermore

(CA).

The primary focus of the study is on the inference of the likelihood function using
a fuzzy neural network from cross correlation between lithofacies and geophysical at-
tributes. This relation is usually very complex and site-specific due to the difference
in measurement scales of lithofacies and geophysical data and due to uncertainty as-
sociated with acquisition and interpretation of the geophysical data. Making a-priori
assumptions about the relation is very difficult, especially when the numbers of litho-
facies and geophysical attributes are more than two. The fuzzy neural network as

an efficient fitting model, however, allows inferring the likelihood function directly
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from training data sets without making any assumption about the form of the non-
linear function. The scale difference between lithofacies and geophysical data and

uncertainty related to data collection are implicitly considered in this model.

Although the method is oriented toward the LLNL project where there are two
different geophysical attributes that have been shown most informative to lithofacies
estimation, it can be directly used to cases where there are more than two types of
geophysical data, such as in Doveton [1986] and Rogers et al. [1992]. The BFNN
method is also very efficient in handling multi-dimensional data sets because cross
correlation is extracted using a fuzzy neural networks, which allows multiple data as
input [Takagi and Sugeno, 1985]. With the use of the fuzzy neural network, complex
patterns inherent in the multi-dimensional data sets can be extracted, which are very

difficult otherwise.

The limitation of the BFNN results from the assumptions that collocated geo-
physical data are available at any estimating location and geophysical data satisfy
the Markov condition. This is applicable when lithofacies along geophysical tomo-
graphic profiles need to be estimated or when there are many borehole measurements
and crosshole geophysical data so that geophysical data can be interpolated to any
estimating location. To estimate lithofacies in other situations, however, more sophis-
ticated models may need to be developed, such as the Markov Chain Monte Carlo
(MCMC) method [Gilks et al., 1998], in which the nonlinear cross correlation can

be simulated as a mixing distribution and the fuzzy neural network will be used to
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explore the structure of the mixing model.
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Chapter 5

Summary

This dissertation is centered on the joint use of hydrogeological and geophysical
data for subsurface characterization. Three case studies were presented, each of which
focuses on an important aspect of the data assimilation using Bayesian methods with

differences in the inference of likelihood functions.

The first case study explores the use of GPR tomographic velocity, GPR to-
mographic attenuation and seismic tomographic velocity for hydraulic conductivity
estimation at the South Oyster Site, using a Bayesian framework. Since site-specific
relations between hydraulic conductivity and geophysical properties are often non-
linear and subject to a large degree of uncertainty such as in this site, a normal
linear regression model is developed that allows exploring these relationships system-
atically. Although the log-conductivity displays a small variation and the geophysical
data vary over only a small range, results indicate that the geophysical data improve
the estimates of the hydraulic conductivity. The improvement is the most significant
where prior information is limited. Among the geophysical data, GPR and seismic

velocity are more useful than GPR attenuation.

In the second case study, a Bayesian approach for combining well logs and geophys-
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ical surveys is presented to improve subsurface characterization. The main challenge
is in creating the bridge to link between ambiguously related geophysical surveys and
well logs. The second challenge is imposed by the disparity between the scales of the
geophysical surveys and the well logs. This approach intends to transform the well log
data so that they can be updated by the geophysical surveys, and this tends to be a
convoluted process. The method starts with generating lithofacies images, conditional
on well logs. Each of the images is used as the basis for generating a series of shaliness
images, again conditional on well logs data. The shaliness images are converted into
resistivity images to create an interface with the crosswell resistivity surveys using a
site-specific petrophysical model relating between shaliness, resistivity and lithofacies.
The lithofacies and resistivity images are then updated using the cross-well resistivity
surveys. The limitations of the approach were also explored using synthetic surveys
with different resolutions and error levels, which closely mimic the conditions at the
LLNL site. Results reveal that the proposed method enhances hydrogeological site

characterization even when the resistivity surveys have a relatively low resolution.

In the last case study, a Bayesian model coupled with a fuzzy neural network
(BFNN) is developed to alleviate the difficulty of using geophysical data in lithofa-
cies estimation when cross correlation between the lithofacies and the geophysical
attributes is nonlinear. The prior estimates are inferred from borehole lithofacies
measurements using indicator kriging based on spatial correlation of the lithofacies,

and the posterior estimates are obtained from updating of the prior using the geo-
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physical data. The novelty of the study lies in the use of a fuzzy neural network for the
inference of the likelihood function. This allows incorporating the spatial correlation
as well as the nonlinear cross correlation into lithofacies estimation. The effectiveness
of the BFNN is demonstrated using synthetic data generated from measurements at

LLNL site.
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Appendix A

Synthetic Electromagnetic Survey

The theoretical foundation of the EM survey is based on Maxwell’s wave propa-

gation equations. These latter couple the electric field E to the magnetic field H as

follows:
V x E(x, 1) = —%B(x,t) (A1)
V x H(x, 1) = %D(x, £) + J(x, 1) (A.2)
V-B(x,1) =0; and V- D(x,t) = Q(x,1) (A.3)

where D is the electric flux, B the magnetic flux, J is the current density, and @ is
the charge density [Chew, 1995]. For time varying EM fields, Equations A.3 can be

derived from the first two equations using the continuity equation given by:

_ 9 _ 90 o
VI=-Zf == (V-D) (A.4)

In this static case, the electric field and the magnetic one are decoupled, and the
electric field equations can be solved independently from the magnetic ones. This
approximation should be viewed as an approximation, applicable in cases where the
spatial variability of the conductivity is weak. This approximation has already been

used in previous studies [Beard et al.,1996].
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In the case of the HSU2 at the LLNL, the mean of the resistivity is 11{Jn and
17Om, in silt and sand, respectively. The variance of the resistivity in silt and sand
are 2 and 3.5(0m)?. These statistics show that the contrast of variability between
and within each silt and sand bodies are similar, and assumptions similar to those of

Beard et al. [1996] can be made.

Defining the current density J as [Telford et al., 1990):

J=R'E; E=-VV (A.5)

where V' is the potential, it satisfies the continuity equation (A.4), which leads to

V(kVV) =0 (A.6)

where k = 1/R is the electric conductivity.

Equation (A.6) describes the response of the domain at the smallest scale over
which s can be defined. In a geophysical survey, the small-scale variability cannot
be detected. Instead, large parts of the domain are homogenized, and respond as a
homogeneous block. The geophysical survey defines the block conductivity, x, = 1/p,

for which the continuity equation becomes:

V(/‘f{,V%) =0 (A7)

where V, describes the potential field in the homogenized resistivity field, subject to

the same boundary conditions as in (A.6).



153

Appendix B

Conditional Mean Sampling

For an arbitrary covariance matrix, generating random samples from a joint nor-
mal distribution with given values of some linear combinations is not difficult, because
all linear combinations of jointly normal random variables are jointly normal, which
means that the conditional distributions are also jointly normal. The procedure is
to subtract the regression of the various variables on the constraints, i.e., assuming
the n random variables ry,---,7;,---,r, are generated from different Gaussian pdf

V(ryml o), -, fr(r;ml, o), respectively, all r; have to average to the resistiv-
ity survey p. For an arithmetic average, the difference between p and the sampled

7 =3, m/n is then subtracted from each r; as follows:
=1 —(r—p) (B.1)

where 7" is the posterior resistivity. For a geometric mean the procedure remains

valid, but the resistivity should be replaced by its logarithm: In(r).

To take into account the variability for each pdf, one should weight the corrected

resistivity value with respect to their relative inertia, as follows:

rl =1 —not(F —p)/ Za,%] (B.2)
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Since corrections are deterministic, statistics of each distribution remain the same.



